
An overview of Knowledge Compilation
Lower bounds, December 08, 2017.

1 Parametrized problems and FPT Algorithms

Flum and Grohe, Parametrized Complexity Theory.

1.1 Preliminaries

Definition 1. • A parametrisation is a ptime computable function k : Σ∗ → N.

• A parametrised problem is a pair (L, k) of L ⊆ Σ∗ and k a parametrisation.

Example 1. • SAT and the number of variables

• Clique (G, k) and k

• SAT and the number of variable per clauses...

Definition 2. • FPT-time algorithm wrt k is an algorithm that decides on input x
if x ∈ L and runs in time f(k(x))poly(|x|) for a computable function f .

• (L, k) is fixed parameter tractable (FPT) if there exists an FPT-time algorithm
wrt k for (L, k)

Example 2.

SAT and number of variables

co-example : colorability

1.2 Example : vertex covers

Definition 3. Let G = (V,E) be a graph. A vertex cover is a set S ⊆ V such that for
every e ∈ E, S ∩ e 6= ∅.

Deciding given G and k if there exists a vertex cover of size ≤ k if a well-known
NP-complete problem. However, it is FPT in k:

• If |E| = 0, return true.

• If k = 0, return false.

• Otherwise, choose e = {u, v} ∈ E. Return V C(G\{u}, k−1)∨V C(G\{v}, k−1).

At most 2k calls of the function. And each call is polynomial in |G|.

1

Independent sets. Can we use this idea to detect independent sets in FPT time?

Definition 4. Let G = (V,E) be a graph. An independent set is a set S ⊆ V such that
for every u, v ∈ S, {u, v} /∈ E.

Lemma 5. Let G = (V,E) be a graph and S ⊆ V . S is a vertex cover iff V \ S is an
independent set.

Previous algorithm gives an algorithm with runtime 2n−k for Independent Sets. It is
not FPT. But IS parametrized by n− k is FPT.

2 Treewidth

Give intuition: how to measure the “distance between a graph and a tree”.

2.1 Definition and examples

Definition 6. A tree decomposition of a graph G = (V,E) is a tree T and a labelling
Bt ⊆ V for every t ∈ V (T) such that:

• for every x ∈ V , {t | x ∈ Bt} is connected,

• for every e ∈ E, there exists t such that e ⊆ Bt.

2.2 Treewidth of well-known graphs

Treewidth of trees.

Theorem 7. A graph is a forest if and only if it has treewidth 1.

Proof of the other way relies on:

Lemma 8. If H ⊆ G then tw(H) ≤ tw(G).

Proof. Remove vertices of V (G) from a decomposition of G.

Treewidth of cycle. Cycle have treewidth 2.

Treewidth of clique. Kk is of treewidth k − 1.
Project examples. Proof of the lower bounds:

Lemma 9. Let G be a graph and d be the minimal degree of its vertices. Then tw(G) ≥ d.

Proof. Let T be a tree decomposition of G of treewidth k. We claim that there exists a
vertex v ∈ V of degree k. Indeed, let t be a leaf of T with father t′. If Bt ⊆ Bt′ then we
can remove t from T and still have a tree decomposition of G of treewidth k. Do this
until you cannot any more to compute a new tree decomposition T ′ of G of treewidth k.
Now let t be a leaf of T ′ and father t′. By definition, there exists x ∈ Bt \Bt′ . Since t is
a leaf, x only appear in Bt by connectivity. Thus, every edge {x, y} ⊆ Bt, ie the degree
of x is ≤ k.

2

Treewidth of grids.

Theorem 10. Let G be a n×m grid with n ≤ m. Then tw(G) ≤ m. And tw(G) ≥ m/3.

3 Formulas of bounded treewidth

3.1 Graphs and formulas

Primal/Incidence graphs. On slides.

3.2 Primal treewidth

Solve #SAT for bounded primal treewidth.

Theorem 11. #SAT parametrised by ptw can be solved in FPT time. More precisely,
we can count the number of solution of F in time 2O(k) · poly(|F |) where k = ptw(F).

Proof. Start from a tree decomposition T of the primal graph of F , root it in a node r.
The bags of T are denoted by Bt. Remember that |Bt| ≤ k + 1.

Given t ∈ T , define Tt to be the tree rooted in t, Vt to be the variables of F appearing
in Tt and Ft to be CNF formula whose clauses are clauses C of F such that var(C) ⊆ Vt.
Observe that Fr = F .

We will compute #F by dynamic programming. For every t and τ : Bt → {0, 1}, we
will compute #Ft[τ]. Observe that there is |T | · 2k+1 such values to compute.

We now explain how the dynamic programming works. If t is a leaf of the tree, then
τ : Bt → {0, 1} assigns all variables of Ft. Thus #Ft[τ] is either 0 or 1.

Now let t be a vertex of t and t1, t2 its children. Observe that Vt1 ∩Vt2 ⊆ Bt. We thus
have #Ft[τ] = #Ft1 [τ1] ·#Ft2 [τ2] where τ1 = τ |V1 and τ2 = τ |V2 .

We conclude by observing that #F [τ1] =
∑

µ:Bt1\Bt→{0,1}#F1[τ1 ∪ µ] (symmetrically

for t2) which all have been precomputed.

Change the proof to construct a d-DNNF:

• Ft[τ] = Ft1 [τ1] ∧ Ft2 [τ2] and this ∧ is decomposable,

• F [τ1] =
∨
µ:Bt1\Bt→{0,1} F1[τ1 ∪ µ] and this ∨ is deterministic.

We can actually construct a dec-DNNF from this. Add decision tree for

µ : Bt1 \Bt → {0, 1}.

Relation with c2d and d4.

• 3-splitting: syntactic decompositions (what Pierre was presenting)

• c2d starts from a tree decomposition of the formula and compile it (not exactly
the same algorithm).

3

3.3 Incidence treewidth

Compile formulas of bounded incidence treewidth toward d-DNNF.

Theorem 12. Given F of itw k, we can construct in FPT time a d-DNNF of size
2O(k) · |F |.

Proof. Start from a tree decomposition T of the primal graph of F , root it in a node
r. The bags of T are denoted by Bt. Remember that |Bt| ≤ k + 1. We denote by
var(Bt) = var(F) ∩Bt and cla(Bt) = F ∩Bt.

Given t ∈ T , define Tt to be the tree rooted in t, Vt to be the variables of F appearing
in Tt and Ft to be CNF formula whose clauses are clauses of F appearing in Tt.

We will compute our d-DNNF for F by dynamic programming. For every t and
τ : var(Bt)→ {0, 1} and C ⊆ cla(Ft), we will compute a d-DNNF with a gate computing
(Ft \ C)[τ] ∧

∧
C∈C ¬C.

4 Toward more general parameters

Slide with the parameters zoo!

4

