
A Knowledge Compilation Take on
Binary Polynomial Optimization

Florent Capelli
joint work with Alberto Del Pia and Silvia di Gregorio

Université d’Artois - CRIL

September 12, 2024

1

Binary Polynomial Optimization

2

Problem definition
Binary Polynomial Optimization problem:

max𝑥1,…, 𝑥𝑛 ∈ {0, 1}𝑛 𝑃 (𝑥1,…, 𝑥𝑛)

where 𝑃 is a polynomial.

3

Problem definition
Binary Polynomial Optimization problem:

max𝑥1,…, 𝑥𝑛 ∈ {0, 1}𝑛 𝑃 (𝑥1,…, 𝑥𝑛)

where 𝑃 is a polynomial.
Observation: 𝑃 may be assumed to be multilinear since 𝑥2 = 𝑥 over {0, 1}

𝑃 = ∑
𝑒 ∈ 𝐸

𝛼𝑒∏
𝑖 ∈ 𝑒
𝑥𝑖

where 𝐸 ⊆ 2𝑉

3.1

Example
𝑃 (𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2𝑥3 − 2𝑥1𝑥3 + 3𝑥1

𝑥1 𝑥2 𝑥3 𝑃 (𝑥)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 1 1

1 1 1 2

𝑃 (1, 0, 0) = 𝑃 (1, 1, 0) = 3 are maximal

1 0 0 3

1 1 0 3

4

Example
𝑃 (𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2𝑥3 − 2𝑥1𝑥3 + 3𝑥1

𝑥1 𝑥2 𝑥3 𝑃 (𝑥)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 1 1

1 1 1 2

𝑃 (1, 0, 0) = 𝑃 (1, 1, 0) = 3 are maximal

1 0 0 3

1 1 0 3

4.1

Complexity of BPO
Bad news: Solving BPO is NP-hard.

Intuition: a polynomial can encode many things:

5

Complexity of BPO
Bad news: Solving BPO is NP-hard.

Intuition: a polynomial can encode many things:
𝑂𝑅 (𝑥, 𝑦) = 𝑥 + 𝑦 − 𝑥𝑦 encodes 𝑥 ∨ 𝑦 on {0, 1}

5.1

Complexity of BPO
Bad news: Solving BPO is NP-hard.

Intuition: a polynomial can encode many things:
𝑂𝑅 (𝑥, 𝑦) = 𝑥 + 𝑦 − 𝑥𝑦 encodes 𝑥 ∨ 𝑦 on {0, 1}
For a graph 𝐺 = (𝑉,𝐸) , with 𝑁 vertices and 𝑀 edges

𝑉𝐶 (𝑉) = ∑
{𝑣, 𝑤} ∈ 𝐸

𝑂𝑅 (𝑣,𝑤)

𝑉𝐶(𝑉̃) = 𝑀 iff 𝑉̃ encodes a vertex cover of 𝐺

5.2

Complexity of BPO
Bad news: Solving BPO is NP-hard.

Intuition: a polynomial can encode many things:
𝑂𝑅 (𝑥, 𝑦) = 𝑥 + 𝑦 − 𝑥𝑦 encodes 𝑥 ∨ 𝑦 on {0, 1}
For a graph 𝐺 = (𝑉,𝐸) , with 𝑁 vertices and 𝑀 edges

𝑉𝐶 (𝑉) = ∑
{𝑣, 𝑤} ∈ 𝐸

𝑂𝑅 (𝑣,𝑤)

𝑉𝐶(𝑉̃) = 𝑀 iff 𝑉̃ encodes a vertex cover of 𝐺
𝑀𝑉𝐶 (𝑉) = 2𝑁× (𝑉𝐶 (𝑉) −𝑀) − ∑𝑥 ∈ 𝑉 𝑣 is maximal at 𝑉̃ iff 𝑉̃ encodes a minimal vertex
cover!

5.3

Solving BPO as ILP
BPO is a non-linear optimization problem.

Make it linear so that we can use LP solvers!

6

Solving BPO as ILP
BPO is a non-linear optimization problem.

Make it linear so that we can use LP solvers!

max𝑥 ∈ {0, 1}𝑉 ∑𝑒 ∈ 𝐸 𝛼𝑒∏𝑣 ∈ 𝑒 𝑥𝑣 rewrites as:

max ∑𝑒 ∈ 𝐸 𝛼𝑒𝑦𝑒 such that
𝑦𝑒 = ∏𝑣 ∈ 𝑒 𝑥𝑣
𝑥𝑣, 𝑦𝑒 ∈ {0, 1}

6.1

Solving BPO as ILP
BPO is a non-linear optimization problem.

Make it linear so that we can use LP solvers!

max𝑥 ∈ {0, 1}𝑉 ∑𝑒 ∈ 𝐸 𝛼𝑒∏𝑣 ∈ 𝑒 𝑥𝑣 rewrites as:

max ∑𝑒 ∈ 𝐸 𝛼𝑒𝑦𝑒 such that
𝑦𝑒 ≤ ∏𝑣 ∈ 𝑒 𝑥𝑣 and ∏𝑣 ∈ 𝑒 𝑥𝑣 ≤ 𝑦𝑒

𝑥𝑣, 𝑦𝑒 ∈ {0, 1}

6.2

Solving BPO as ILP
BPO is a non-linear optimization problem.

Make it linear so that we can use LP solvers!

max𝑥 ∈ {0, 1}𝑉 ∑𝑒 ∈ 𝐸 𝛼𝑒∏𝑣 ∈ 𝑒 𝑥𝑣 rewrites as:

max ∑𝑒 ∈ 𝐸 𝛼𝑒𝑦𝑒 such that
𝑦𝑒 ≤ 𝑥𝑣 for 𝑣 ∈ 𝑒 and ∏𝑣 ∈ 𝑒 𝑥𝑣 ≤ 𝑦𝑒

𝑥𝑣, 𝑦𝑒 ∈ {0, 1}

6.3

Solving BPO as ILP
BPO is a non-linear optimization problem.

Make it linear so that we can use LP solvers!

max𝑥 ∈ {0, 1}𝑉 ∑𝑒 ∈ 𝐸 𝛼𝑒∏𝑣 ∈ 𝑒 𝑥𝑣 rewrites as:

max ∑𝑒 ∈ 𝐸 𝛼𝑒𝑦𝑒 such that
𝑦𝑒 ≤ 𝑥𝑣 for 𝑣 ∈ 𝑒 and ∑𝑣 ∈ 𝑒 𝑥𝑣 ≤ 𝑦𝑒 − 1 + |𝑒|

𝑥𝑣, 𝑦𝑒 ∈ {0, 1}

6.4

Solving BPO as ILP
BPO is a non-linear optimization problem.

Make it linear so that we can use LP solvers!

max𝑥 ∈ {0, 1}𝑉 ∑𝑒 ∈ 𝐸 𝛼𝑒∏𝑣 ∈ 𝑒 𝑥𝑣 rewrites as:

max ∑𝑒 ∈ 𝐸 𝛼𝑒𝑦𝑒 such that
𝑦𝑒 ≤ 𝑥𝑣 for 𝑣 ∈ 𝑒 and ∑𝑣 ∈ 𝑒 𝑥𝑣 ≤ 𝑦𝑒 − 1 + |𝑒|

𝑥𝑣, 𝑦𝑒 ∈ {0, 1}

Integer Linear Program solvers can now solve it!

6.5

Solving BPO as ILP
BPO is a non-linear optimization problem.

Make it linear so that we can use LP solvers!

max𝑥 ∈ {0, 1}𝑉 ∑𝑒 ∈ 𝐸 𝛼𝑒∏𝑣 ∈ 𝑒 𝑥𝑣 rewrites as:

max ∑𝑒 ∈ 𝐸 𝛼𝑒𝑦𝑒 such that
𝑦𝑒 ≤ 𝑥𝑣 for 𝑣 ∈ 𝑒 and ∑𝑣 ∈ 𝑒 𝑥𝑣 ≤ 𝑦𝑒 − 1 + |𝑒|

𝑥𝑣, 𝑦𝑒 ∈ {0, 1}

Integer Linear Program solvers can now solve it!
They may stall on known-to-be easy instances. Is there an alternative way?

6.6

BPO as a Boolean Function Problem

7

Boolean Function
𝑓 ⊆ {0, 1}𝑋 is a Boolean function on variables 𝑋.
An assignment 𝜏:𝑋 → {0, 1} satisfies 𝑓 iff 𝜏 ∈ 𝑓.

8

Boolean Function
𝑓 ⊆ {0, 1}𝑋 is a Boolean function on variables 𝑋.
An assignment 𝜏:𝑋 → {0, 1} satisfies 𝑓 iff 𝜏 ∈ 𝑓.

Example

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 1 1

Represented as a formula 𝑥 ⇒ (𝑦 ∧ 𝑧) or by
(¬𝑥 ∨ 𝑦) ∧ (¬𝑥 ∨ 𝑧)

8.1

Weighted Boolean Function
For 𝑤:𝑋×{0, 1} → ℝ and 𝜏 ∈ {0, 1}𝑋 consider:

𝑤 (𝜏) = ∏
𝑥 ∈ 𝑋

𝑤 (𝑥, 𝜏 (𝑥)) and 𝑤 (𝑓) = ∑
𝜏 ∈ 𝑓
𝑤 (𝜏)

9

Weighted Boolean Function
For 𝑤:𝑋×{0, 1} → ℝ and 𝜏 ∈ {0, 1}𝑋 consider:

𝑤 (𝜏) = ∏
𝑥 ∈ 𝑋

𝑤 (𝑥, 𝜏 (𝑥)) and 𝑤 (𝑓) = ∑
𝜏 ∈ 𝑓
𝑤 (𝜏)

Example

𝑤 (𝑥, 0) = 1,
𝑤 (𝑥, 1) = 2,
𝑤 (𝑦, 0) = 3,
𝑤 (𝑦, 1) = − 3,
𝑤 (𝑧, 0) = 5,
𝑤 (𝑧, 1) = − 5

x y z 𝑤

0 0 0 1 * 3 * 5 15

0 0 1 1 * 3 * − 5 −15

0 1 0 1 * − 3 * 5 −15

0 1 1 1 * − 3 * − 5 15

1 1 1 2 * − 3 * − 5 30

𝑤 (𝑓) 15 − 15 − 15 + 15 + 30 30

9.1

Algebraic Model Counting

10

Algebraic Model Counting
𝑤 (𝑓) = ∑

𝜏 ∈ 𝑓
∏
𝑥 ∈ 𝑋

𝑤 (𝑥, 𝜏 (𝑥))

10.1

Algebraic Model Counting
𝑤 (𝑓) = ⨁

𝜏 ∈ 𝑓
⨂

𝑥 ∈ 𝑋
𝑤 (𝑥, 𝜏 (𝑥))

where 𝕂 = (𝐾, ⊕ , ⊗ , 0⊕, 1⊗) is a semi-ring

10.2

Algebraic Model Counting
𝑤 (𝑓) = ⨁

𝜏 ∈ 𝑓
⨂

𝑥 ∈ 𝑋
𝑤 (𝑥, 𝜏 (𝑥))

where 𝕂 = (𝐾, ⊕ , ⊗ , 0⊕, 1⊗) is a semi-ring

That is:
⊕ , ⊗ commutative, associative
𝑎 ⊕ 0⊕ = 𝑎, 𝑏⊗ 1⊗ = 𝑏
⊗ distributes over ⊕ :
(𝑎⊗ (𝑏 ⊕ 𝑐)) = (𝑎⊗ 𝑏) ⊕ (𝑎⊗ 𝑐) .

10.3

Algebraic Model Counting
𝑤 (𝑓) = ⨁

𝜏 ∈ 𝑓
⨂

𝑥 ∈ 𝑋
𝑤 (𝑥, 𝜏 (𝑥))

where 𝕂 = (𝐾, ⊕ , ⊗ , 0⊕, 1⊗) is a semi-ring

That is:
⊕ , ⊗ commutative, associative
𝑎 ⊕ 0⊕ = 𝑎, 𝑏⊗ 1⊗ = 𝑏
⊗ distributes over ⊕ :
(𝑎⊗ (𝑏 ⊕ 𝑐)) = (𝑎⊗ 𝑏) ⊕ (𝑎⊗ 𝑐) .

Examples

10.4

Algebraic Model Counting
𝑤 (𝑓) = ⨁

𝜏 ∈ 𝑓
⨂

𝑥 ∈ 𝑋
𝑤 (𝑥, 𝜏 (𝑥))

where 𝕂 = (𝐾, ⊕ , ⊗ , 0⊕, 1⊗) is a semi-ring

That is:
⊕ , ⊗ commutative, associative
𝑎 ⊕ 0⊕ = 𝑎, 𝑏⊗ 1⊗ = 𝑏
⊗ distributes over ⊕ :
(𝑎⊗ (𝑏 ⊕ 𝑐)) = (𝑎⊗ 𝑏) ⊕ (𝑎⊗ 𝑐) .

Examples

(ℝ, + , × , 0, 1)

10.5

Algebraic Model Counting
𝑤 (𝑓) = ⨁

𝜏 ∈ 𝑓
⨂

𝑥 ∈ 𝑋
𝑤 (𝑥, 𝜏 (𝑥))

where 𝕂 = (𝐾, ⊕ , ⊗ , 0⊕, 1⊗) is a semi-ring

That is:
⊕ , ⊗ commutative, associative
𝑎 ⊕ 0⊕ = 𝑎, 𝑏⊗ 1⊗ = 𝑏
⊗ distributes over ⊕ :
(𝑎⊗ (𝑏 ⊕ 𝑐)) = (𝑎⊗ 𝑏) ⊕ (𝑎⊗ 𝑐) .

Examples

(ℝ, + , × , 0, 1)
Any fields, e.g., ℤ/𝑝ℤ

10.6

Algebraic Model Counting
𝑤 (𝑓) = ⨁

𝜏 ∈ 𝑓
⨂

𝑥 ∈ 𝑋
𝑤 (𝑥, 𝜏 (𝑥))

where 𝕂 = (𝐾, ⊕ , ⊗ , 0⊕, 1⊗) is a semi-ring

That is:
⊕ , ⊗ commutative, associative
𝑎 ⊕ 0⊕ = 𝑎, 𝑏⊗ 1⊗ = 𝑏
⊗ distributes over ⊕ :
(𝑎⊗ (𝑏 ⊕ 𝑐)) = (𝑎⊗ 𝑏) ⊕ (𝑎⊗ 𝑐) .

Examples

(ℝ, + , × , 0, 1)
Any fields, e.g., ℤ/𝑝ℤ
Arctic semi-ring:
(ℚ, max , + , −∞, 0)

10.7

AMC over (max , +) -semiring
𝑤 (𝑓) = max

𝜏 ∈ 𝑓
∑
𝑥 ∈ 𝑋

𝑤 (𝑥, 𝜏 (𝑥))

This is an optimization task!

11

AMC over (max , +) -semiring
𝑤 (𝑓) = max

𝜏 ∈ 𝑓
∑
𝑥 ∈ 𝑋

𝑤 (𝑥, 𝜏 (𝑥))

This is an optimization task!

Example

𝑤 (𝑥, 0) = 1,
𝑤 (𝑥, 1) = 2,
𝑤 (𝑦, 0) = 3,
𝑤 (𝑦, 1) = − 3,
𝑤 (𝑧, 0) = 5,
𝑤 (𝑧, 1) = − 5

x y z 𝑤

0 0 0 1 + 3 + 5 9

0 0 1 1 + 3 − 5 −1

0 1 0 1 − 3 + 5 3

0 1 1 1 − 3 − 5 −7

1 1 1 2 − 3 − 5 −6

𝑤 (𝑓) max (9, − 1, 3, − 7, − 6) 9

11.1

Encoding BPO as Boolean function
Example: 𝑃 (𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2𝑥3 −2𝑥1𝑥3 +3𝑥1

12

Encoding BPO as Boolean function
Example: 𝑃 (𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2𝑥3 −2𝑥1𝑥3 +3𝑥1

𝑓𝑃 = (𝑌1 ⇔ (𝑋1 ∧𝑋2 ∧𝑋3)) ∧ (𝑌2 ⇔ (𝑋1 ∧𝑋3)) ∧ (𝑌3 ⇔ 𝑋1)
𝑤𝑃 (𝑌1, 1) = 1, 𝑤𝑃 (𝑌2, 1) = − 2 and 𝑤𝑃 (𝑌3, 1) = 3.
𝑤𝑃 (𝑍, 𝑏) = 0 for every other values.

12.1

Encoding BPO as Boolean function
Example: 𝑃 (𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2𝑥3 −2𝑥1𝑥3 +3𝑥1

𝑓𝑃 = (𝑌1 ⇔ (𝑋1 ∧𝑋2 ∧𝑋3)) ∧ (𝑌2 ⇔ (𝑋1 ∧𝑋3)) ∧ (𝑌3 ⇔ 𝑋1)
𝑤𝑃 (𝑌1, 1) = 1, 𝑤𝑃 (𝑌2, 1) = − 2 and 𝑤𝑃 (𝑌3, 1) = 3.
𝑤𝑃 (𝑍, 𝑏) = 0 for every other values.

For every 𝜏 ⊨ 𝑓𝑃 we have
𝑤𝑃 (𝜏) = 𝑃 (𝑥1 = 𝜏 (𝑋1) , 𝑥2 = 𝜏 (𝑋2) , 𝑥3 = 𝜏 (𝑋3))

and 𝑤𝑃 (𝑓) = max 𝑃

12.2

Encoding BPO as Boolean function
Example: 𝑃 (𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2𝑥3 −2𝑥1𝑥3 +3𝑥1

𝑓𝑃 = (𝑌1 ⇔ (𝑋1 ∧𝑋2 ∧𝑋3)) ∧ (𝑌2 ⇔ (𝑋1 ∧𝑋3)) ∧ (𝑌3 ⇔ 𝑋1)
𝑤𝑃 (𝑌1, 1) = 1, 𝑤𝑃 (𝑌2, 1) = − 2 and 𝑤𝑃 (𝑌3, 1) = 3.
𝑤𝑃 (𝑍, 𝑏) = 0 for every other values.

For every 𝜏 ⊨ 𝑓𝑃 we have
𝑤𝑃 (𝜏) = 𝑃 (𝑥1 = 𝜏 (𝑋1) , 𝑥2 = 𝜏 (𝑋2) , 𝑥3 = 𝜏 (𝑋3))

and 𝑤𝑃 (𝑓) = max 𝑃

Example

For 𝜏 (𝑋1) = 1, 𝜏 (𝑋2) = 0, 𝜏 (𝑋3) = 1:
if 𝜏 ⊨ 𝑓𝑃 then 𝜏 (𝑌1) = 0, 𝜏 (𝑌2) = 1, 𝜏 (𝑌3) = 1
hence 𝑤𝑃 (𝜏) = 𝑤𝑃 (𝑌2, 1) + 𝑤𝑃 (𝑌3, 1) = − 2 + 3 = 1!

12.3

Formal encoding
For 𝑃 := ∑𝑒 ∈ 𝐸 𝛼𝑒∏𝑖 ∈ 𝑒 𝑥𝑖 define:

𝑓𝑃 := ⋀
𝑒 ∈ 𝐸

𝐶𝑒

where 𝐶𝑒 := 𝑌𝑒 ⇔ ⋀
𝑖 ∈ 𝑒
𝑋𝑖

𝐶𝑒 encodes 𝑦𝑒 = ∏𝑖 ∈ 𝑒 𝑥𝑖!

13

Formal encoding
For 𝑃 := ∑𝑒 ∈ 𝐸 𝛼𝑒∏𝑖 ∈ 𝑒 𝑥𝑖 define:

𝑓𝑃 := ⋀
𝑒 ∈ 𝐸

𝐶𝑒

where 𝐶𝑒 := 𝑌𝑒 ⇔ ⋀
𝑖 ∈ 𝑒
𝑋𝑖

𝐶𝑒 encodes 𝑦𝑒 = ∏𝑖 ∈ 𝑒 𝑥𝑖!

and 𝑤𝑃 on (ℚ, max , + , −∞, 0) as:
𝑤𝑃 (𝑌𝑒, 1) = 𝛼𝑒 and
𝑤𝑃 (𝑋𝑖, 𝑏) = 𝑤𝑃 (𝑌𝑒, 0) = 0 for 𝑏 ∈ {0, 1}.

13.1

BPO as a Boolean Function
Theorem

𝑤𝑃 (𝑓𝑃) = max 𝑃 (𝑥1,…, 𝑥𝑛)
over the (max,+) -semiring.

The underlying algorithmic toolbox is very different from ILP solvers providing new insights.

We can use existing toolbox for AMC to solve BPO
theoretical results
AND practical results

14

Knowledge Compilation
how to solve AMC

15

Representing Boolean functions

How can we represent Boolean function: 𝑓 ⊆ {0, 1}𝑋

So far we have seen: list every satisfying assignment of 𝑓 (aka Truth Table)
Easy to manipulate since the representation is explicit
Not compact

16

CNF Formulas
𝐹 = ⋀ (⋁ ℓ) where ℓ is a literal 𝑥 or ¬𝑥 for some variable 𝑥.

Examples

17

CNF Formulas
𝐹 = ⋀ (⋁ ℓ) where ℓ is a literal 𝑥 or ¬𝑥 for some variable 𝑥.

Examples

𝐹1 = (𝑥 ∨ ¬𝑦) ∧ (¬𝑥 ∨ 𝑦)
𝑥 𝑦 𝐹1
0 0 1

1 1 1

* * 0

17.1

CNF Formulas
𝐹 = ⋀ (⋁ ℓ) where ℓ is a literal 𝑥 or ¬𝑥 for some variable 𝑥.

Examples

𝐹1 = (𝑥 ∨ ¬𝑦) ∧ (¬𝑥 ∨ 𝑦)
𝑥 𝑦 𝐹1
0 0 1

1 1 1

* * 0

𝐹2 = (𝑥 ∨ ¬𝑧) ∧ (¬𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧)
𝑥 𝑦 𝑧 𝐹2
1 1 1 1

0 1 0 1

1 1 0 1

* * * 0

17.2

The SAT Problem
CNF formulas are extremely simple yet can encode many interesting problems.

Theorem
Cook, Levin, 1971: The problem SAT of deciding whether a CNF formula is

satisfiable is NP-complete.
Valiant 1979: The problem #SAT of counting the satisfying assignment of a

CNF formula is #P-complete.

18

The SAT Problem
CNF formulas are extremely simple yet can encode many interesting problems.

Theorem
Cook, Levin, 1971: The problem SAT of deciding whether a CNF formula is

satisfiable is NP-complete.
Valiant 1979: The problem #SAT of counting the satisfying assignment of a

CNF formula is #P-complete.

Very unlikely that efficient algorithms exists for solving SAT / #SAT
Thriving community nevertheless addresses these problems in practice
SAT Solver very efficient in many applications

18.1

Relevance of CNF formulas
Natural encoding: succinctly encodes many problems, witnessed by the many existing industrial
benchmarks.
Intractable for algebraic model counting

Looking for tradeoffs between Truth Tables and CNFs!

19

Circuit Based Representations
Research has focused on factorized representation.

Taken from SMBC Comics
Carl von Linné (1707-1778)

20

An example
Data structure based on decision nodes to represent “ (𝑥 + 𝑦 + 𝑧) is even”.

21

An example
Data structure based on decision nodes to represent “ (𝑥 + 𝑦 + 𝑧) is even”.

Path for 𝑥 = 1, 𝑦 = 0 and 𝑧 = 1 is accepting.

21.1

OBDDs
Previous data structure are Ordered Binary Decision Diagrams.

Directed Acyclic graphs with one source
Sinks are labeled by 0 or 1
Internal nodes are decision nodes on a
variable in 𝑥1,…, 𝑥𝑛
Variables tested in order.

22

Counting with OBDDs
How many 3×3 {0, 1}-matrices have a row full of ones?

23

Counting with OBDDs
How many 3×3 {0, 1}-matrices have a row full of ones?

23.1

Counting with OBDDs
How many 3×3 {0, 1}-matrices have a row full of ones?

23.2

Counting with OBDDs
How many 3×3 {0, 1}-matrices have a row full of ones?

23.3

Counting with OBDDs
How many 3×3 {0, 1}-matrices have a row full of ones?

23.4

Counting with OBDDs
How many 3×3 {0, 1}-matrices have a row full of ones?

23.5

Counting with OBDDs
How many 3×3 {0, 1}-matrices have a row full of ones?

23.6

Tractability of OBDDs
This idea can be generalized to any OBDDs:

Theorem
Let 𝑓 ⊆ {0, 1}𝑋 be a function computed by an OBDD having 𝐸 edges. We

can compute #𝑓 with 𝑂 (𝐸) arithmetic operations.

24

Tractability of OBDDs
This idea can be generalized to any OBDDs:

Theorem
Let 𝑓 ⊆ {0, 1}𝑋 be a function computed by an OBDD having 𝐸 edges. We

can compute #𝑓 with 𝑂 (𝐸) arithmetic operations.

Generalises to many tasks:
Evaluate 𝑃𝑟 (𝑓) if probabilities 𝑃𝑟 (𝑥 = 1) are given for each 𝑥 ∈ 𝑋
Enumerate 𝑓
Algebraic Model Counting on any semi-ring.

24.1

Back to BPO
Theorem

𝑤𝑃 (𝑓𝑃) = max 𝑃 (𝑥1,…, 𝑥𝑛) where
𝑓𝑃 = ⋀𝑒 ∈ 𝐸 𝑌𝑒 ⇔ ⋀

𝑖 ∈ 𝑒
𝑋𝑖

𝑤𝑃 (𝑌𝑒, 1) = 𝛼𝑒 and 0 otherwise

25

Back to BPO
Theorem

𝑤𝑃 (𝑓𝑃) = max 𝑃 (𝑥1,…, 𝑥𝑛) where
𝑓𝑃 = ⋀𝑒 ∈ 𝐸 𝑌𝑒 ⇔ ⋀

𝑖 ∈ 𝑒
𝑋𝑖

𝑤𝑃 (𝑌𝑒, 1) = 𝛼𝑒 and 0 otherwise

Solving BPO:

compute 𝑤𝑃 (𝑓𝑃) via dynamic programming on the OBDD itself
transform 𝑓𝑃 into an OBDD

25.1

Back to BPO
Theorem

𝑤𝑃 (𝑓𝑃) = max 𝑃 (𝑥1,…, 𝑥𝑛) where
𝑓𝑃 = ⋀𝑒 ∈ 𝐸 𝑌𝑒 ⇔ ⋀

𝑖 ∈ 𝑒
𝑋𝑖

𝑤𝑃 (𝑌𝑒, 1) = 𝛼𝑒 and 0 otherwise

Solving BPO:

compute 𝑤𝑃 (𝑓𝑃) via dynamic programming on the OBDD itself
transform 𝑓𝑃 into an OBDD

25.2

A Knowledge Compiler for OBDD
Exhaustive DPLL with Caching based on Shannon Expansion:

𝐹 = (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ 𝑦 ∨ 𝑧)

26

A Knowledge Compiler for OBDD
Exhaustive DPLL with Caching based on Shannon Expansion:

𝐹 = (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ 𝑦 ∨ 𝑧)

𝐹 [𝑥 = 0] = (𝑦 ∨ 𝑧) ∧ (¬𝑦 ∨ ¬𝑧)
𝐹 [𝑥 = 1] = (¬𝑦 ∨ ¬𝑧) ∧ (𝑦 ∨ 𝑧)

26.1

A Knowledge Compiler for OBDD
Exhaustive DPLL with Caching based on Shannon Expansion:

𝐹 = (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ 𝑦 ∨ 𝑧)

𝐹 [𝑥 = 0] = (𝑦 ∨ 𝑧) ∧ (¬𝑦 ∨ ¬𝑧)
𝐹 [𝑥 = 1] = (¬𝑦 ∨ ¬𝑧) ∧ (𝑦 ∨ 𝑧)
𝐹 [𝑥 = 1, 𝑦 = 1] = ¬𝑧
𝐹 [𝑥 = 1, 𝑦 = 0] = 𝑧

26.2

A Knowledge Compiler for OBDD
Exhaustive DPLL with Caching based on Shannon Expansion:

𝐹 = (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ 𝑦 ∨ 𝑧)

𝐹 [𝑥 = 0] = (𝑦 ∨ 𝑧) ∧ (¬𝑦 ∨ ¬𝑧)
𝐹 [𝑥 = 1] = (¬𝑦 ∨ ¬𝑧) ∧ (𝑦 ∨ 𝑧)
𝐹 [𝑥 = 1, 𝑦 = 1] = ¬𝑧
𝐹 [𝑥 = 1, 𝑦 = 0] = 𝑧

26.3

A Knowledge Compiler for OBDD
Exhaustive DPLL with Caching based on Shannon Expansion:

𝐹 = (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ 𝑦 ∨ 𝑧)

𝐹 [𝑥 = 0] = (𝑦 ∨ 𝑧) ∧ (¬𝑦 ∨ ¬𝑧)
𝐹 [𝑥 = 1] = (¬𝑦 ∨ ¬𝑧) ∧ (𝑦 ∨ 𝑧)
𝐹 [𝑥 = 1, 𝑦 = 1] = ¬𝑧
𝐹 [𝑥 = 1, 𝑦 = 0] = 𝑧
𝐹 [𝑥 = 0, 𝑦 = 1] = ¬𝑧
= 𝐹 [𝑥 = 1, 𝑦 = 1]

26.4

A Knowledge Compiler for OBDD
Exhaustive DPLL with Caching based on Shannon Expansion:

𝐹 = (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ 𝑦 ∨ 𝑧)

𝐹 [𝑥 = 0] = (𝑦 ∨ 𝑧) ∧ (¬𝑦 ∨ ¬𝑧)
𝐹 [𝑥 = 1] = (¬𝑦 ∨ ¬𝑧) ∧ (𝑦 ∨ 𝑧)
𝐹 [𝑥 = 1, 𝑦 = 1] = ¬𝑧
𝐹 [𝑥 = 1, 𝑦 = 0] = 𝑧
𝐹 [𝑥 = 0, 𝑦 = 1] = ¬𝑧
= 𝐹 [𝑥 = 1, 𝑦 = 1]

26.5

A Knowledge Compiler for OBDD
Exhaustive DPLL with Caching based on Shannon Expansion:

𝐹 = (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ 𝑦 ∨ 𝑧)

𝐹 [𝑥 = 0] = (𝑦 ∨ 𝑧) ∧ (¬𝑦 ∨ ¬𝑧)
𝐹 [𝑥 = 1] = (¬𝑦 ∨ ¬𝑧) ∧ (𝑦 ∨ 𝑧)
𝐹 [𝑥 = 1, 𝑦 = 1] = ¬𝑧
𝐹 [𝑥 = 1, 𝑦 = 0] = 𝑧
𝐹 [𝑥 = 0, 𝑦 = 1] = ¬𝑧
= 𝐹 [𝑥 = 1, 𝑦 = 1]
𝐹 [𝑥 = 0, 𝑦 = 0] = 𝑧 = 𝐹 [𝑥 = 1, 𝑦 = 0]

26.6

A Knowledge Compiler for OBDD
Exhaustive DPLL with Caching based on Shannon Expansion:

𝐹 = (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ 𝑦 ∨ 𝑧)

𝐹 [𝑥 = 0] = (𝑦 ∨ 𝑧) ∧ (¬𝑦 ∨ ¬𝑧)
𝐹 [𝑥 = 1] = (¬𝑦 ∨ ¬𝑧) ∧ (𝑦 ∨ 𝑧)
𝐹 [𝑥 = 1, 𝑦 = 1] = ¬𝑧
𝐹 [𝑥 = 1, 𝑦 = 0] = 𝑧
𝐹 [𝑥 = 0, 𝑦 = 1] = ¬𝑧
= 𝐹 [𝑥 = 1, 𝑦 = 1]
𝐹 [𝑥 = 0, 𝑦 = 0] = 𝑧 = 𝐹 [𝑥 = 1, 𝑦 = 0]

26.7

A Knowledge Compiler for OBDD
Exhaustive DPLL with Caching based on Shannon Expansion:

𝐹 = (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ ¬𝑦 ∨ ¬𝑧) ∧ (¬𝑥 ∨ 𝑦 ∨ 𝑧)

𝐹 [𝑥 = 0] = (𝑦 ∨ 𝑧) ∧ (¬𝑦 ∨ ¬𝑧)
𝐹 [𝑥 = 1] = (¬𝑦 ∨ ¬𝑧) ∧ (𝑦 ∨ 𝑧)
𝐹 [𝑥 = 1, 𝑦 = 1] = ¬𝑧
𝐹 [𝑥 = 1, 𝑦 = 0] = 𝑧
𝐹 [𝑥 = 0, 𝑦 = 1] = ¬𝑧
= 𝐹 [𝑥 = 1, 𝑦 = 1]
𝐹 [𝑥 = 0, 𝑦 = 0] = 𝑧 = 𝐹 [𝑥 = 1, 𝑦 = 0]

This scheme is parameterized by:
caching policy
branching heuristics

26.8

Exploiting decomposition
For many tasks, such as model counting, it is interesting to detect syntactic decomposable part

of the formula, that is:

𝐹 (𝑋) = 𝐺 (𝑌) ∧ 𝐻 (𝑍) and 𝑌 ∩ 𝑍 = ∅

27

Exploiting decomposition
For many tasks, such as model counting, it is interesting to detect syntactic decomposable part

of the formula, that is:

𝐹 (𝑋) = 𝐺 (𝑌) ∧ 𝐻 (𝑍) and 𝑌 ∩ 𝑍 = ∅

decDNNF: OBDD + ∧ -gates decomposable
Still allows for algebraic model counting via
the identity 𝑤 (𝐹) = 𝑤 (𝐺) ×𝑤 (𝐻)
Compilers can be adapted to detect this rule.

27.1

The D4 compiler
D4 is a top-down compiler as shown earlier:

Use oracle calls to a SAT solver with clause learning to cut branches and speed up later computation
Use heuristics to decompose the formula so that it breaks into smaller connected components.

28

The D4 compiler
D4 is a top-down compiler as shown earlier:

Use oracle calls to a SAT solver with clause learning to cut branches and speed up later computation
Use heuristics to decompose the formula so that it breaks into smaller connected components.

instance d4 (s) scip (s)

bernasconi.20.3 0.002 0.01

bernasconi.20.5 0.04 8.91

bernasconi.20.10 1.21 119.20

bernasconi.20.15 14.92 479.15

bernasconi.25.3 0.00 0.01

bernasconi.25.6 0.19 151.65

bernasconi.25.13 12.59 1 698.18

bernasconi.25.19 442.26 TIMEOUT

bernasconi.25.25 TIMEOUT TIMEOUT

This only illustrates that the
underlying structure of Bernasconi
instances is better addressed using

heuristics from model counting
than the ILP approach.

28.1

Tractability results

29

Tractable classes of BPO

𝑃 (𝑥1,…, 𝑥𝑛) = ∑
𝑒 ∈ 𝐸

𝛼𝑒∏
𝑖 ∈ 𝑒
𝑥𝑖 where 𝐸 ⊆ 2𝑉

𝐻 = (𝑉,𝐸) is a hypergraph.

30

Tractable classes of BPO

𝑃 (𝑥1,…, 𝑥𝑛) = ∑
𝑒 ∈ 𝐸

𝛼𝑒∏
𝑖 ∈ 𝑒
𝑥𝑖 where 𝐸 ⊆ 2𝑉

𝐻 = (𝑉,𝐸) is a hypergraph.

Exploit the structure of 𝐻 to solve BPO more efficiently.

30.1

A toy example
Tree BPO: BPO problem where 𝐻 is a tree.

Example: 𝑥1𝑥2 + 5𝑥1𝑥3 + 3𝑥0𝑥1 − 2𝑥0𝑥4 + 3𝑥4𝑥5

31

A toy example
Tree BPO: BPO problem where 𝐻 is a tree.

Example: 𝑥1𝑥2 + 5𝑥1𝑥3 + 3𝑥0𝑥1 − 2𝑥0𝑥4 + 3𝑥4𝑥5

31.1

A toy example
Tree BPO: BPO problem where 𝐻 is a tree.

Example: 𝑥1𝑥2 + 5𝑥1𝑥3 + 3𝑥0𝑥1 − 2𝑥0𝑥4 + 3𝑥4𝑥5

31.2

A toy example
Tree BPO: BPO problem where 𝐻 is a tree.

Example: 𝑥1𝑥2 + 5𝑥1𝑥3 + 3𝑥0𝑥1 − 2𝑥0𝑥4 + 3𝑥4𝑥5

31.3

A toy example
Tree BPO: BPO problem where 𝐻 is a tree.

Example: 𝑥1𝑥2 + 5𝑥1𝑥3 + 3𝑥0𝑥1 − 2𝑥0𝑥4 + 3𝑥4𝑥5

31.4

A toy example
Tree BPO: BPO problem where 𝐻 is a tree.

Example: 𝑥1𝑥2 + 5𝑥1𝑥3 + 3𝑥0𝑥1 − 2𝑥0𝑥4 + 3𝑥4𝑥5

31.5

A toy example
Tree BPO: BPO problem where 𝐻 is a tree.

Example: 𝑥1𝑥2 + 5𝑥1𝑥3 + 3𝑥0𝑥1 − 2𝑥0𝑥4 + 3𝑥4𝑥5

31.6

A toy example
Tree BPO: BPO problem where 𝐻 is a tree.

Example: 𝑥1𝑥2 + 5𝑥1𝑥3 + 3𝑥0𝑥1 − 2𝑥0𝑥4 + 3𝑥4𝑥5

31.7

A toy example
Tree BPO: BPO problem where 𝐻 is a tree.

Example: 𝑥1𝑥2 + 5𝑥1𝑥3 + 3𝑥0𝑥1 − 2𝑥0𝑥4 + 3𝑥4𝑥5

31.8

A toy example
Tree BPO: BPO problem where 𝐻 is a tree.

Example: 𝑥1𝑥2 + 5𝑥1𝑥3 + 3𝑥0𝑥1 − 2𝑥0𝑥4 + 3𝑥4𝑥5

31.9

A toy example
Tree BPO: BPO problem where 𝐻 is a tree.

Example: 𝑥1𝑥2 + 5𝑥1𝑥3 + 3𝑥0𝑥1 − 2𝑥0𝑥4 + 3𝑥4𝑥5

31.10

A toy example
Tree BPO: BPO problem where 𝐻 is a tree.

Example: 𝑥1𝑥2 + 5𝑥1𝑥3 + 3𝑥0𝑥1 − 2𝑥0𝑥4 + 3𝑥4𝑥5

31.11

A toy example
Tree BPO: BPO problem where 𝐻 is a tree.

Example: 𝑥1𝑥2 + 5𝑥1𝑥3 + 3𝑥0𝑥1 − 2𝑥0𝑥4 + 3𝑥4𝑥5

31.12

Many Known Tractable Classes
Theorem

𝐻 has tree width 𝑘: BPO can be solved in time
2𝑂 (𝑘) 𝑝𝑜𝑙𝑦 (𝐻) .
𝐻 is 𝛽-acyclic: BPO can be solved in time
𝑝𝑜𝑙𝑦 (𝐻) .

Dedicated algorithm for each class.

32

A strange symmetry
Very similar results from Boolean function literature:

Theorem
If a CNF 𝐹 has tree width 𝑘 then one can construct a DNNF for
𝐹 of size 2𝑂 (𝑘) 𝑝𝑜𝑙𝑦 (𝐹) .
If a CNF 𝐹 is 𝛽-acyclic then one can construct a DNNF for 𝐹 of
size 𝑝𝑜𝑙𝑦 (𝐹) .

Is there a connection?

33

Encoding BPO as a CNF
For 𝑃 := ∑𝑒 ∈ 𝐸 𝛼𝑒∏𝑖 ∈ 𝑒 𝑥𝑖 define:

𝑓𝑃 := ⋀
𝑒 ∈ 𝐸

𝐶𝑒

where 𝐶𝑒 := 𝑌𝑒 ⇔ ⋀
𝑖 ∈ 𝑒
𝑋𝑖

𝐶𝑒 can be encoded as the conjunction of:
⋁
𝑖 ∈ 𝑒
¬𝑋𝑖 ∨ 𝑌𝑒

¬𝑌𝑒 ∨𝑋𝑖 for every 𝑖 ∈ 𝑒

34

Encoding BPO as a CNF
For 𝑃 := ∑𝑒 ∈ 𝐸 𝛼𝑒∏𝑖 ∈ 𝑒 𝑥𝑖 define:

𝑓𝑃 := ⋀
𝑒 ∈ 𝐸

𝐶𝑒

where 𝐶𝑒 := 𝑌𝑒 ⇔ ⋀
𝑖 ∈ 𝑒
𝑋𝑖

𝐶𝑒 can be encoded as the conjunction of:
⋁
𝑖 ∈ 𝑒
¬𝑋𝑖 ∨ 𝑌𝑒

¬𝑌𝑒 ∨𝑋𝑖 for every 𝑖 ∈ 𝑒

𝑓𝑃 is naturally encoded as a CNF 𝐹𝑃 that preserves tree width.

34.1

Tractability of BPO via KC
Every known tractability for BPO can be recovered in our framework as follows:

1. Encode 𝑃 as a CNF formula 𝐹𝑃
2. Transform 𝐹𝑃 into a polynomial size tractable representation 𝐶𝑃 using known results
3. Solve AMC on 𝐶𝑃

And we get new tractability results for structure that where not known
to make BPO tractable.

35

Beyond BPO
KC approach very versatile:

36

Beyond BPO
KC approach very versatile:

Solve top-k BPO: find the 𝑘 best solutions of 𝑃 by finding the 𝑘 best in the circuit

36.1

Beyond BPO
KC approach very versatile:

Solve top-k BPO: find the 𝑘 best solutions of 𝑃 by finding the 𝑘 best in the circuit
Solve BPO + Cardinality constraints: max 𝑃 (𝑥1,…, 𝑥𝑛) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡∑𝑖 = 1

𝑛 𝑥𝑖 ∈ 𝑆 where 𝑆 ⊆ [𝑛] by
transforming the circuit

36.2

Beyond BPO
KC approach very versatile:

Solve top-k BPO: find the 𝑘 best solutions of 𝑃 by finding the 𝑘 best in the circuit
Solve BPO + Cardinality constraints: max 𝑃 (𝑥1,…, 𝑥𝑛) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡∑𝑖 = 1

𝑛 𝑥𝑖 ∈ 𝑆 where 𝑆 ⊆ [𝑛] by
transforming the circuit
Solve pseudo BPO: 𝑃 can contains monomial of the form ∏𝑖 ∈ 𝐴 𝑥𝑖∏𝑖 ∈ 𝐵 (1 − 𝑥𝑖)

36.3

Conclusion
Connection between BPO and Boolean functions:

Recover known results and generalize them using the existing rich literature
Seems to have practical relevance

Perspective:

KC only exploits combinatorics of the underlying Boolean function. How
could we mix existing more algebraic techniques?

37

