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Binary Polynomial Optimization problem:

where P1s a polynomial.



Problem definition

Binary Polynomial Optimization problem:

where P1s a polynomial.
Observation: Pmay be assumed to be multilinear since z* = x over {0, 1}
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Bad news: Solving BPO 1s NP-hard.
Intuition: a polynomial can encode many things:
e OR(x,y) =x+y— xyencodes x Vyon{0,1}
e Foragraph G = ( V, E ), with N vertices and M edges
VO (V) = » OR(vw)
{v,w} e FE
VO (V) — M iff Vencodes a vertex cover of G

« MVC (V) =2Nx (VO (V) —M) — ) _vismaximal at Viff Vencodes a minimal vertex

cover!
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Solving BPO as 1LP

BPO is a non-linear optimization problem.

Make it linear so that we can use LP solvers!

Max, o\ > pll _ x, rewrites as:

max ) _ ..y, such that

y, < x,forv € eand ZUEB
Ty, Y, € 10,1}

Integer Linear Program solvers can now solve it!
They may stall on known-to-be easy instances. Is there an alternative way?



BPO as a Boolean Function Problem



Boolean Function

f C {0, 1}X 1s a Boolean function on variables X.
An assignment 7: X — {0, 1} satisfies fiff 7 € f.



Boolean Function

f C {0, 1}X 1s a Boolean function on variables X.
An assignment T: X — {0, 1} satisfies fiff 7 € f.

Example

Represented as a formula z = (y A z) or by

(mzVy) AN (—zVz)
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Weighted Boolean Function

For w: X x {0,1} — Rand 7 € {0,1}" consider:
w(r) = lJw(zr(z))andw(f) =) w(r)
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For w: X x {0,1} — Rand 7 € {0,1}" consider:
w(r) = lJw(zr(z))andw(f) =) w(r)

zeX ref
Example
X Yy Z W
0 0 0 1*3*5 15
0 0 1 1*3*—5 — 15
0 1 0 1*—3%*5 —115
0 1E g =] 15
1 2% =3% =F§ 30

15—-15—-15+15+30 30
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Algebraic Model Counting

w(H) =@ _ ®, _ wirr(z))
where K = (K, D . ®,O@,1®) 1S a semi-ring

That 1s:
e &, ® commutative, associative
ca®P0y=0a,001y5 =0
e ® distributes over P :
(a® (bbc) ) = (a®b) & (a®c).
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where K = (K, D . ®,O@,1®) 1S a semi-ring
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e ® distributes over @ :
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e (R, +, x,0,1)

10.5



Algebraic Model Counting

w(H) =@ _ ®, _ wirr(z))
where K = (K, D . ®,O@,1®) 1S a semi-ring

That 1s: Examples
e &, ® commutative, assoclative
ca®0y=0a,b0Q01y; =0
e ® distributes over @ :
(a® (bbc) ) = (a®b) & (a®c).

e (R, +, x,0,1)
e Any fields, e.g., Z/pZ

10.6



Algebraic Model Counting

w(H) =@ _ ®, _ wirr(z))
where K = (K, D . ®,O@,1®) 1S a semi-ring

That 1s: Examples
e &, ® commutative, associative
ca®0y=0a,001y; =0
e ® distributes over @ :
(a® (bbc) ) = (a®b) & (a®c).

e (R, +, x,0,1)
e Any fields, e.g., Z/pZ
e Arctic semi-ring:
(Q, max, +, —00,0)
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AMC over ( max , + ) -semiring

x e X
This is an optimization task!
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AMC over ( max, + ) -semiring

x e X
This is an optimization task!

Example

1+3+9

14+3—95

_ O | O | -
S| = | © | N

1—-3+9

1—-3—-5
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max (9, —1,3, =7, —6)
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Encoding BPO as Boolean function

Example: P ( x;,x,, x5 )
(1o (XXAXAX3) ) A

(

T ToXg —2T1 Ty +3T,
oo (XXAX3)) A (e X))

Yi,1) =1L, wp(Y,,1) = —2andwp ( Y;,1) = 3.
Z

,b ) = 0 for every other values.
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Encoding BPO as Boolean function

Example: P( x{,2,,%3 ) = T{ToT3 —2T,T3 +31,
= (e (XAXNAX) ) A (be (XAX) ) A (Y3e X))
.wP(le,1> :1,UJP(Y2,1) — —Qandwp(lfg,l) —= 3.
( Z,b) = 0 for every other values.

For every 7 F f, we have
Plx;=7(Xy),29=7(Xy),23=7(X3) )

and wp ( f) = max P
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Encoding BPO as Boolean function

Example: P( x{,2,,%3 ) = T{ToT3 —2T,T3 +31,
= (e (XAXNAX) ) A (be (XAX) ) A (Y3e X))
‘wp(l/l,l) :1,wP<Y2,1> — _Zandwp()/g,l) —= 3.
( Z,b) = 0 for every other values.

For every 7 f, we have
Plx;=7(Xy),29=7(Xy),23=7(X3) )

and wp ( f) = max P

Example

Form(X,) =1,7(X,) =0,7(X;) =1:
eif 7E fpthen7(Y; ) =0,7(Y,) =1,7(Y;) =1
’hencewP(T):wP(}/z,l) wP(ifg,l):_Q 3:1'
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Formal encoding

For P:= ) _«.]] _ =« define:

1€e

e
ec B

where C, =Y, < /\z'EeX’i

C,encodesy = ][ ;!
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Formal encoding

ec b
where C, =Y, < /\iEeX”i

C,encodesy = ][ ;!

. ) ©
1€e ¢

and wpon (Q, max, +, —oo,0) as:
e wp(Y,, 1) =a, and
e wp(X;,b) =wp(Y,,0) =0forbe {0,1}.

131



BPO as a Boolean Function

Theorem

wp ( fp) = max P(xy,...,x, )
over the ( max, + ) -semiring.

The underlying algorithmic toolbox 1s very different from ILP solvers providing new insights.

We can use existing toolbox for AMC to solve BPO

e theoretical results
 AND practical results




Knowledge Compilation

how to solve AMC



Representing Boolean functions

How can we represent Boolean function: f C {0, 1}X

So far we have seen: /ist every satisfying assignment of f (aka Truth Table)
e Easy to manipulate since the representation 1s explicit
e Not compact



CNF Formulas

F= A (V ¢ ) where ¢ isaliteral = or ~x for some variable .
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CNF Formulas

A (\/ ¢ ) where ¢ isaliteral z or —z for some variable .

Examples

171



F= A (V ¢ ) where ¢ isaliteral = or ~x for some variable .

Examples
Fo=(xV—-2z)AN(—2xVy)
Voy) A (mzVy) r y z F,
vy b 1 1
0 0 1
0 0
I 1 1
1 0
-0 X ok %



The SAT Problem

CNF formulas are extremely simple yet can encode many interesting problems.

Theorem
Cook, Levin, 1971: The problem SAT of deciding whether a CNF formula 1s
satisfiable 1s NP-complete.
Valiant 1979: The problem #SAT of counting the satisfying assignment of a
CNF formula is #P-complete.




The SAT Problem

CNF formulas are extremely simple yet can encode many interesting problems.

Theorem
Cook, Levin, 1971: The problem SAT of deciding whether a CNF formula 1s
satisfiable 1s NP-complete.
Valiant 1979: The problem #SAT of counting the satisfying assignment of a
CNF formula is #P-complete.

e Very unlikely that efficient algorithms exists for solving SAT / #SAT
e Thriving community nevertheless addresses these problems in practice
e SA'T Solver very efficient in many applications




Relevance of CNF formulas

e Natural encoding: succinctly encodes many problems, witnessed by the many existing industrial
benchmarks.
e Intractable for algebraic model counting

Looking for tradeofls between Truth Tables and CNFs!



Circuit Based Representations

Research has focused on faciorized representation.
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Data structure based on decision nodes to represent “ ( x 4+ ¢y + 2z ) is even”.
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Data structure based on decision nodes to represent “ ( x 4+ ¢y + 2z ) is even”.

P

T

_ .0
\_gﬂ(

Path for x = 1, y = 0 and 2z = 1 1s accepting.




Previous data structure are Ordered Binary Decision Diagrams.

e Directed Acyclic graphs with one source

e Sinks are labeled by O or 1

 Internal nodes are decision nodes on a
variable in x, ..., x

n
e Variables tested in order.
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This 1dea can be generalized to any OBDDs:

Theorem
Let f C {0, I}X be a function computed by an OBDD having E edges. We
can compute # f with O ( £/ ) arithmetic operations.




This 1dea can be generalized to any OBDDs:

Theorem
Let f C {0, I}X be a function computed by an OBDD having E edges. We
can compute # f with O ( £/ ) arithmetic operations.

Generalises to many tasks:
e Evaluate Pr ( f) if probabilities Pr ( x = 1 ) are given for each x € X
e Enumerate f
o Algebraic Model Counting on any semi-ring.
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Theorem

wp ( fp) = max P(xy,...,x, ) where
’fP:/\eEEYve@/\iEBXi
e wp(Y,,1) = «, and 0 otherwise

Solving BPO:
e transform f, into an OBDD
e compute wp ( fp) via dynamic programming on the OBDD itself




Back to BPO

Theorem
wp ( fp) = max P(xy,...,x, ) where
* fP: /\eEJE?Y;3<:>> /\iEGXi

e wp(Y,,1) = «, and 0 otherwise

Solving BPO:
e transform f, into an OBDD
e compute wp ( fp) via dynamic programming on the OBDD itself
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Exhaustive DPLL with Caching based on Shannon Expansion:
A(-zV-yv-z)A(-xzVyVz)

e Flz=0] = (yVz) A (—yV—z)
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Exhaustive DPLL with Caching based on Shannon Expansion:
A(-zV-yv-z)A(-xzVyVz)

This scheme 1s parameterized by:
e caching policy
e branching heuristics

e Flz=0] = (yVz) A (—yV—z)

e Flz=1] = (-yV—z) A (yV=z)

e Flze=1y=1| =z

Pl =1,y=0] =

e Flx=0,y=1] =z
—Flr=1y=1]

e Flz=0,y=0| =z=Flz=1,y=



Exploiting decomposition

For many tasks, such as model counting, it 1s interesting to detect syntactic decomposable part
of the formula, that 1s:

F(X)=G(Y)ANH(Z) andYNZ =1



For many tasks, such as model counting, it 1s interesting to detect syntactic decomposable part
of the formula, that 1s:

F(X)=G(Y)ANH(Z) andYNZ=

e decDNNF: OBDD + A -gates decomposable

o Still allows for algebraic model counting via
theidentityw ( F') =w (G ) xw( H)

o Compilers can be adapted to detect this rule.




The D4 compiler

D4 is a top-down compiler as shown earlier:
e Use oracle calls to a SAT solver with clause learning to cut branches and speed up later computation
e Use heuristics to decompose the formula so that 1t breaks mto smaller connected components.



The D4 compiler

D4 is a top-down compiler as shown earlier:
e Use oracle calls to a SAT solver with clause learning to cut branches and speed up later computation
e Use heuristics to decompose the formula so that 1t breaks into smaller connected components.

instance d4 (s) scip (s)

bernasconi1.20.3  0.002 0.01
bernasconi.20.5 0.04 8.91
bernascon1.20.10 1.21 119.20 ThlS. Only lustrates that the .
bernasconi.20.15 14.92 479.15 l.lnderlylng. structure of Bernasc.onl
: instances is better addressed using

bernasconi.25.3  0.00 0.01 L. .
b e 010 e heuristics from model counting

ernasconi.25. : :

than the ILP approach.

bernasconi.25.13 12.59 1 698.18
bernasconi.25.19 442.26 TIMEOUT

bernasconi.25.25 TIMEOUT TIMEOUT

28.1



Tractability results



Tractable classes of BPO

P(xy,..,x,) = Z%Hxi where F C 2"

ec F 1 € e

H = (V,E) is a hypergraph.



Tractable classes of BPO

P(xy,..,x,) = Z%Hxi where F C 2"

ec F 1 € e

H = (V,E) is a hypergraph.

Exploit the structure of [ to solve BPO more efficiently.

30.1



Tree BPO: BPO problem where H i1s a tree.
Example: x,x, + 52,25 + 32| — 2202, + 32,425
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Tree BPO: BPO problem where H is a tree.
Example: x,x, + 52,25 + 32| — 2202, + 32,425




Tree BPO: BPO problem where H is a tree.
Example: x,x, + 52,25 + 32| — 2202, + 32,425

mm(%[%’-"]) = 3
ot (B [=0)= AOD




Many Known Tractable Classes

Theorem
. H has tree width k: BPO can be solved in time
20 CF) poly (H ) .
. H is (B-acyclic: BPO can be solved in time
poly (H ) .

Dedicated algorithm for each class.



Very similar results from Boolean function literature:

Theorem
If a CNF F'has tree width & then one can construct a DNNF for
F of size 2° %) poly ( F) .
If a CNF F'is S-acyclic then one can construct a DNNF for F'of
size poly ( F') .

Is there a connection?




Encoding BPO as a CNF
For P:= )  __o.]] _ =;define:

i€e !
fP:: /\ Oe
eck
where C, =Y, < /\iEeXi

C', can be encoded as the conjunction of:

e V. X VY,
1€ e
e =Y V X, forevery: € e



Encoding BPO as a CNF
For P:= )  __o.]] _ =;define:

1e€e b
fP:: /\ Oe
eck
where C, :=Y, & A _ X,

C', can be encoded as the conjunction of:
’ \/z ce _IXi v Ye
e =Y V X, forevery: € e

fp is naturally encoded as a CNF F'; that preserves tree width.

34.1



Tractability of BPO via KC

Every known tractability for BPO can be recovered in our framework as follows:

1. Encode P as a CNF formula F'p
2. Transform F'5 into a polynomial size tractable representation C'p using known results
3. Solve AMC on C'p,

And we get new tractability results for structure that where not known

to make BPO tractable.
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Beyond BPO

KC approach very versatile:
e Solve top-k BPO: find the £ best solutions of P by finding the & best in the circuit
 Solve BPO + Cardinality constraints: max P ( xy,...,x, ) such that Z?: T, € Swhere S C [n] by
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Beyond BPO

KC approach very versatile:
e Solve top-k BPO: find the £ best solutions of P by finding the £ best in the circuit
e Solve BPO + Cardinality constraints: max P ( zq,...,x, ) such that Z?: , z; € Swhere S C [n] by
transforming the circuit

e Solve pseudo BPO: P can contains monomial of the form HZ o4 % HZ 5 (1—=xz,)
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Conclusion

Connection between BPO and Boolean functions:
e Recover known results and generalize them using the existing rich literature
e Seems to have practical relevance
Perspective:

KC only exploits combinatorics of the underlying Boolean function. How

could we mix existing more algebraic techniques?







