A New Hypergraph Measure
for #SAT

Florent Capelli
CRIL, Université d’Artois

Dagstuhl Seminar 24421
October 17, 2024

Loosely based on Direct Access for Conjunctive Queries with Negation with Oliver Irwin, ICDT 24



Structural Tractability of #SAT



The #SAT problem

e #P-hard to solve.
e Even for very restricted classes: #Mon-2-SAT, #Horn-SAT etc.

e NP-hard to (even badly) approximate (see ApproxMC for practical work 1n this direction).


https://github.com/meelgroup/approxmc

The #SAT problem

Given CNF F; return # F, the number of satisfying assignments.

e #P-hard to solve.
e Even for very restricted classes: #Mon-2-SAT, #Horn-SAT etc.

e NP-hard to (even badly) approximate (see ApproxMC for practical work 1n this direction).

Same story as SAT: hard problem but useful in practice.
e Reasoning on propositionnal knowledge basis.
e Solve other counting problems using parcimonious reductions.

When can we solve #SAT more efficiently than bruteforce?


https://github.com/meelgroup/approxmc

Exploiting clauses-variables interactions

Tractability of #SAT arises from restricted clauses-variables interactions.
FXNY=0and F( X,2,20,Y) =G (X, 21,290) NH(Y, 2,2, ) :



Exploiting clauses-variables interactions

Tractability of #SAT arises from restricted clauses-variables interactions.
FXNY=0and F( X,2,20,Y) =G (X, 21,290) NH(Y, 2,2, ) :

#F= > #Glz =a,2,=0b] #H[z =a,z =Db]

a,b e {0,1}°



Exploiting clauses-variables interactions

Tractability of #SAT arises from restricted clauses-variables interactions.

FXNY=0and F( X,2,20,Y) =G (X, 21,290) NH(Y, 2,2, ) :

#F= > #Glz =a,2,=0b] #H[z =a,z =Db]

a,b e {0,1}°

If we can recursively decompose the formula this way, we can count

efficiently.




F= (z;V-2yVxy) N (23Vay Vo) A (2 VoxsVoxg) A

Primal graph

Structure of CNF formulas

(xy Va3 Vo Vo)

Incidence graph

Hypergraph



Structural Tractability

Theorem

If (primal / incidence) graph of F'of size n has treewidth & then # F'can be computed in
time 27 (") . [1]




Structural Tractability

Theorem

If (primal / incidence) graph of F'of size n has treewidth & then # F'can be computed in
time 2° ¥ . [1]

Exhaustive DPLL:
#HE| X+ 7] =#G | X 7] - #H|[ X < 7]
since YN Z C X

Tree decomposition of F'
[1] Samer, Marko, and Stefan Szeider. “Algorithms for propositional model counting.” Journal of Discrete Algorithms 8.1 (2010): 50-64.



Structural Tractability

Theorem

If (primal / incidence) graph of F'of size n has treewidth & then # F'can be computed in
time 2° ¥ . [1]

Exhaustive DPLL:
#HE| X+ 7] =#G | X 7] - #H|[ X < 7]
since YN Z C X
e Branch on 2" values z, ..., X,

e Recursive calls on H and (3

e Cache subformulas already solved

Tree decomposition of F'
[1] Samer, Marko, and Stefan Szeider. “Algorithms for propositional model counting.” Journal of Discrete Algorithms 8.1 (2010): 50-64.



Hypergraph Acyclicities



a-acyclicity

Generalize acyclicity to hypergraphs:
e Used 1n databases/CSP (tractable conjunctive queries / CSPs).
e Usually defined in terms of tree decompositions of hypergraphs... Not today!

Definition

A graph 1s acyclic if and only 1f we can obtained the empty graph by iteratively
removing leaves.




a-acyclicity

Generalize acyclicity to hypergraphs:
e Used 1n databases/CSP (tractable conjunctive queries / CSPs).
e Usually defined in terms of tree decompositions of hypergraphs... Not today!

Definition

A hypergraph is c-acyclic if and only if we can obtained the empty graph by iteratively
removing o- leaves.




a-acyclicity

Generalize acyclicity to hypergraphs:
e Used 1n databases/CSP (tractable conjunctive queries / CSPs).
e Usually defined in terms of tree decompositions of hypergraphs... Not today!

Definition

A hypergraph is c-acyclic if and only if we can obtained the empty graph by iteratively
removing o- leaves.

We call such vertex ordering: cv-elimination order.



a-leaves

e« H= (V,E) ahypergraph.
e N (v) :neighborhood of v

Definition

A vertex v in a hypergraph is an a-leave if N (v ) C e for some edge e of H

* Tg, ...,y 1S an a-elimination order.
e Subgraphs may no be a-acyclic (look, a

/ \ triangle!)




SAT 1s hard on a-acyclic hypergraphs

Not a good variable-clause restriction for tractability:
e ["a CNF formula

e " =FA (x,V..Vx,Vy) is a-acyclic
o I SAT iff F'is SAT.

Hard subformulas make the formula hard (this does not happen with

conjunctive queries).




Enters the rest of greek alphabet

Definition

A hypergraph H is p-acyclic if and only if every H C H is a-acyclic.

How can we use it algorithmically?



Enters the rest of greek alphabet

Definition

A hypergraph H is p-acyclic if and only if every H C H is a-acyclic.

How can we use it algorithmically?

Theorem

A hypergraph H is (B-acyclic if and only if there exists an order on V'that is an -
elimination order for every /" C H.

We call such ordering a S-elimination order.
Side note: this is not how $-elimination order is usually defined.



SAT and -acyclicity

SAT is easy on S-acyclic instances, with a classical algorithm [2]:

Theorem

Davis-Putnam resolution following a S-elimination order terminates in polynomial time!

[2] Ordyniak, Sebastian, Dani€l Paulusma, and Stefan Szeider. “Satisfiability of acyclic and almost acyclic CNF formulas.” Theoretical Computer Science, 2013.



SAT and -acyclicity

#SAT is easy on (3-acyclic instances, with classical algorithm [3]:

Theorem

Exhaustive DPLL following a reversed S-elimination order terminates in polynomial time!




SAT and -acyclicity

#SAT is easy on (-acyclic instances, with classical algorithm [3]:

Theorem

Exhaustive DPLL following a reversed S-elimination order terminates in polynomial time!

e Tractable case not captured by bounded treewidth or other existing graph measures

e Only works for a very restricted set of instances.
[3] Florent Capelli, Understanding the complexity of #SAT using knowledge compilation, LICS, 2017.

131



Hyperorder widths



Non acyclic hypergraphs

How do we measure how far we are from acyclicity?

e c-acyclicity naturally generalizes to hypertree width: htw ( H ) € N.
e Usually defined via tree decomposition.
 We give an order based definition.



e H= (V,FE), 7= (vy,...,v, ) orderon V.

e [teratively add edge IV ( v; ) and remove v,

o Hyperorder width how ( Hym) of m = (vq,...,v, ) : maximum number of edges from H to cover the
neighborhood of v, in H..

L6

I
X3
L] L9

Original hypergraph

L4




Width of an elimination order

eH= (V,E), 7= (vy,...,v, ) orderon V.

e [teratively add edge IV ( v; ) and remove v,

o Hyperorder width how ( H,m) of m = (v, ..., v, ) : maximum number of edges from H to cover the
neighborhood of v, in H..

L6 6

| =
T3 L3
Ta DT To A s L4 2= 45

N (x, ) covered by 2 edges of H

Original hypergraph



Width of an elimination order

e H= (V,FE), 7= (vy,...,v, ) orderon V.

e Iteratively add edge IV ( v; ) and remove v,

o Hyperorder width how ( H,m) of m = (wvy,...,v, ) : maximum number of edges from H to cover the
neighborhood of v, in H..

L6

| |
L3 /@
/ \ L4 XI5
L4 L1 L2 L5
N (x5 ) covered by 3 edges of H

Original hypergraph




Width of an elimination order

e H= (V,E), 7= (vy,...,v, ) orderon V.

e Iteratively add edge IV ( v; ) and remove v,

o Hyperorder width how ( H,m) of m = (vy,...,v, ) : maximum number of edges from H to cover the
neighborhood of v, in H..

L6

I
X3
/ \ 5 .
L4 L] L9 L5

N (x5 ) covered by 3 edges of H

Original hypergraph



e H= (V,FE), 7= (vy,...,v, ) orderon V.

e Iteratively add edge IV ( v; ) and remove v,

o Hyperorder width how ( Hym) of m = (vq,...,v, ): maximum number of edges from H to cover the
neighborhood of v, in H..

LG L6

I
X3
L] L9

Original hypergraph N ( X 4 ) COVGI'@d by 3 €dg€S Of H

L4 L5 T




e H= (V,FE), 7= (vy,...,v, ) orderon V.

e [teratively add edge IV ( v; ) and remove v,

o Hyperorder width how ( Hym) of m = (vq,...,v, ) : maximum number of edges from H to cover the
neighborhood of v, in H..

L6 L6

I
X3
L] L9

Original hypergraph N ( X 5 ) COVGI'@d by 2 6dg€S Of H

L4




e H= (V,FE), 7= (vy,...,v, ) orderon V.

e Iteratively add edge IV ( v; ) and remove v,

o Hyperorder width how ( Hym) of m = (vq,...,v, ) : maximum number of edges from H to cover the
neighborhood of v, in H..

L6

I
x3
/ \ how (
X1 L2

Original hypergraph

L4




Hyperorder width and Hypertree width

Hypertree width of H : htw ( H) = ming htw ( H,T') where T'is a tree decomposition
Hyperorder width of H : how ( H ) = min_ how ( H, 7 ) where 7 is an elimination order.

Theorem

how(H) =htw( H).

e how ( H) = 1iff His a-acyclic
e For how(-), the order is the decomposition.



B-Hypertree Width

Sometimes, there is H C H st htw ( H" ) > htw ( H) .
Same trick as before:

H) = H’
Bhtw ( H ) max htw ( H)

How can we use it algorithmically?



B-Hypertree Width

Sometimes, there is H C H st htw ( H" ) > htw ( H) .
Same trick as before:

H) = H’
Bhtw ( H ) max htw ( H)

How can we use it algorithmically?

We do not know...

18.1



Problem with S-Hypertree Width

Expanding the definition:

Bhtw ( H) = [max m%nhtw(H,T)

Problem: a different decomposition can be used for different

subhypergraphs...




Problem with S-Hypertree Width

Expanding the definition:

Bhtw ( H) = [max m%nhtw(H,T)

Problem: a different decomposition can be used for different

subhypergraphs...

Swap quantifiers!

B'htw ( H) = min Igpg}%htw(H,T)

19.1



Problem with S-Hypertree Width

Expanding the definition:

Bhtw ( H) = [max m%nhtw(H,T)

Problem: a different decomposition can be used for different

subhypergraphs...

Swap quantifiers!

B'htw ( H) = min Iglg}%htw(H,T)

Problem: g’htw (S, ) = n...

19.2



Bringing Order

For H -acyclic:
e H,, H, C H may have very different tree decompositions.
e Tree decomposition is not the right tool here.

Theorem

A hypergraph H is S-acyclic if and only if there exists an order on V' that is an -

elimination order for every /" C .




Bringing Order

For H -acyclic:
e H,, H, C H may have very different tree decompositions.
e Tree decomposition is not the right tool here.

Theorem

A hypergraph H is S-acyclic if and only if there exists an order on V' that is an -
elimination order for every /" C .

max min htw ( H',T)
HCH T

max min how ( H', )
HCH 7

Swap quantifier in the second equality:
Bhow ( H) = min Ijr{nazs%[how(H’,W)
7 ' C

20.1



SAT and Show ( H )

Theorem

#SAT can be solved in time n® (¥) for a formula F of size n and Bhow ( F) = k.



SAT and Show ( H )

Theorem

#SAT can be solved in time n® (¥) for a formula F of size n and Bhow ( F) = k.

e Algorithm: exhaustive DPLL following a reversed optimal elimination order.

21.1



SAT and Show ( H )

Theorem

#SAT can be solved in time ¢ (%)

for a formula F of size n and Show ( F')

e Algorithm: exhaustive DPLL following a reversed optimal elimination order.
» Generalizes tractability of [S-acyclic formulas and bounded nest set width [4]

[4] Lanzinger, M.. Tractability beyond [-acyclicity for conjunctive queries with negation and SAT. Theoretical Computer Science, 2023.

21.2



SAT and Show ( H )

Theorem

#SAT can be solved in time n® (¥) for a formula F of size n and Bhow ( F) = k.

e Algorithm: exhaustive DPLL following a reversed optimal elimination order.
e Generalizes tractability of S-acyclic formulas and bounded nest set width [4]
e Algorithm implicitly constructs decision-DNNF for F:

[4] Lanzinger, M.. Tractability beyond [-acyclicity for conjunctive queries with negation and SAT. Theoretical Computer Science, 2023.

21.3



SAT and Show ( H )

Theorem

#SAT can be solved in time n¢ (%)

for a formula F'of size n and Show ( F')

e Algorithm: exhaustive DPLL following a reversed optimal elimination order.
e Generalizes tractability of S-acyclic formulas and bounded nest set width [4]
e Algorithm implicitly constructs decision-DNNF for F:

» gives tractable weighted model counting

= tractable direct access

[4] Lanzinger, M.. Tractability beyond [-acyclicity for conjunctive queries with negation and SAT. Theoretical Computer Science, 2023.

21.4



Wrapping up

Structural complexity of #SAT:

) )

- /7
/ Incidence MIM-width

B-hyperorder width

nCidence Clique'Width
i i 77

e Where does S-how sit in this diagram?
e Where is the frontier for SAT?

4 a-acyclicity




Ad

Postdoc position open at CRIL, Lens!



[1] Samer, Marko, and Stefan Szeider. “Algorithms for propositional model counting.” Journal of
Discrete Algorithms 8.1 (2010): 50-64.
[2] Ordyniak, Sebastian, Dani€l Paulusma, and Stefan Szeider. “Satisfiability of acyclic and
almost acyclic CNF formulas.” Theoretical Computer Science, 2013.
[3] Florent Capelli, “Understanding the complexity of #SAT using knowledge compilation”,
LICS, 2017.
[4] Lanzinger Matthias. “Tractability beyond [-acyclicity for conjunctive queries with negation
and SAT”. Theoretical Computer Science, 2023.






