Direct Access for Conjunctive Queries with Negations

Florent Capelli, Oliver Irwin CRIL, Université d'Artois Séminaire KRDB 23 Janvier 2025

Direct Access on Join Queries

Join Query : $Q(x_1, ..., x_n) = \bigwedge_{i=1}^k$ where $\mathbf{x_i}$ is a tuple over $X = \{x_1, ..., x_n\}$

$\sum_{i=1}^{k} R_i (\mathbf{x_i})$

Join Query : $Q(x_1, ..., x_n) = \bigwedge_{i=1}^k$ where $\mathbf{x_i}$ is a tuple over $X = \{x_1, ..., x_n\}$ Example:

 $Q(city, country, name, id) = People (id, name, city) \wedge Capitals (city, country)$ People

6 Francesca Rome

- $\sum_{i=1}^{k} R_i (\mathbf{x_i})$
	-

Join Query : $Q(x_1, ..., x_n) = \bigwedge_{i=1}^k$ where $\mathbf{x_i}$ is a tuple over $X = \{x_1, ..., x_n\}$ Example:

 $Q(city, country, name, id) = People (id, name, city) \wedge Capitals (city, country)$ People

6 Francesca Rome

- $\sum_{i=1}^{k} R_i (\mathbf{x_i})$
	-

Join Query : $Q(x_1, ..., x_n) = \bigwedge_{i=1}^k$ where $\mathbf{x_i}$ is a tuple over $X = \{x_1, ..., x_n\}$ Example:

 $Q(city, country, name, id) = People (id, name, city) \wedge Capitals (city, country)$ People

6 Francesca Rome

$\sum_{i=1}^{k} R_i (\mathbf{x_i})$

Q ($\mathbb D$)

Direct Access

Quickly access Q ($\mathbb D$) $\, [\, k \,]$, the k^{th} element of Q ($\mathbb D$) . Q ($\mathbb D$)

-
-
-
-

Direct Access

Quickly access Q ($\mathbb D$) $\, [\, k \,]$, the k^{th} element of Q ($\mathbb D$) . Q ($\mathbb D$)

 $(Rome, Italy, Chiara, 3)$.

-
-
-
-
-

Naive Direct Access

Naive algorithm: materialize $Q(\mathbb{D})$ in an array, sort it. Access.

$Q(D) [1432] = ??$

Naive Direct Access

Naive algorithm: materialize $Q(\mathbb{D})$ in an array, sort it. Access.

Precomputation : O ($\#Q$ (\mathbb{D})) at least (may be worse), **very costly** $\textbf{Access}: O(1)$, nearly free

$Q(D) [1432] = ??$

Naive Direct Access

Naive algorithm: materialize $Q(\mathbb{D})$ in an array, sort it. Access.

Precomputation : O ($\#Q$ (\mathbb{D})) at least (may be worse), **very costly** $\textbf{Access}: O(1)$, nearly free

$Q(D) [1432] = ??$

Orders ?

- 1. Order by weights
- 2. Lexicographical orders
	- \bullet order on the vars of Q
	- order on domain D of D

6

Orders ?

- 1. Order by weights
- 2. Lexicographical orders
	- \bullet order on the vars of Q
	- order on domain D of D

Variable order $(city, country, name, id)$:

city	country	name	id
Berlin	Germany	Djibril	
Paris	France	Alice	
Rome	Italy	Chiara	
Rome	Italy	Francesca	6

Orders ?

- 1. Order by weights
- 2. Lexicographical orders
	- \bullet order on the vars of Q
	- order on domain D of D

In this talk: only lexicographical

Applications

Direct Access generalizes many tasks that have been previously studied:

- Uniform sampling without repetitions
- Ranked enumeration
- Counting queries:
	- how many answers between τ_1 and τ_2 ?
	- how many answers extend a *partial answer* etc.

Beating the Naive Approach

Beating Naive Direct Access

Naive Direct Access:

- Preprocessing at least O ($\#Q$ (D)).
- Access time $O(1)$.

Can we have better preprocessing and reasonable access time?

Beating Naive Direct Access

Naive Direct Access:

- Preprocessing at least O ($\#Q$ (\mathbb{D})).
- Access time $O(1)$.

Can we have better preprocessing and reasonable access time?

"Ideal" complexity:

- \bullet $O(|D|)$ preprocessing
- \bullet O (\log |D|) access time

Complexity of Direct Access

Computing $\#Q(\mathbb{D})$ given Q and \mathbb{D} is $\#P$ -hard.

No Direct Access algorithm with good guarantees for every Q and D .

Complexity of Direct Access

Computing $\#Q \ (\mathbb{D})$ given Q and \mathbb{D} is $\#P$ -hard.

No Direct Access algorithm with good guarantees for every Q and D .

Data complexity assumption: for a fixed Q, what is the best preprocessing $f(|D|)$ for an access time O ($polylog|\mathbb{D}|$) ?

> In this work, all presented complexity in data complexity will also be polynomial for combined complexity.

An easy query? $Q \left(\, a, b, c \, \right) \, = A \left(\, a, b \, \right) \, \wedge B \left(\, b, c \, \right)$. a b $\left(\begin{array}{c} b \end{array} \right)$ c $\left(\begin{array}{c} c \end{array} \right)$

An easy query?
\n
$$
Q(a, b, c) = A(a, b) \wedge B(a, c)
$$

\n $Q(a, b, c) = A(a, b) \wedge B(a, c)$

Direct Access for lexicographical order induced by (a, b, c) ?

- Precomputation $O(|D|)$
- Access time $O({|\log |{\mathbb D}|})$

 $(\, b , c \,)$.

$$
Q(a, b, c) = A(a, b) \wedge B(a, c)
$$

Direct Access for lexicographical order induced by (a, b, c) ?

- Precomputation $O(|D|)$
- Access time $O(|\log |D|)$

Precomputation :

- $\#Q(0,0,_) = 3$
- $\#Q(1,1,_) = 2$
- $\#Q(2,1,_) = 2$

 $(\ b, c \)$.

An easy query?
\n
$$
Q(a, b, c) = A(a, b) \wedge B(a, c)
$$

\n $Q(a, b, c) = A(a, b) \wedge B(a, c)$

Direct Access for lexicographical order induced by Γ

- Precomputation $O(|D|)$
- Access time $O(|\log |D|)$

Precomputation :

- $\#Q(0,0,_) = 3$
- $\#Q(1,1,_) = 2$
- $\#Q(2,1,_) = 2$
-
-
-

 (b, c) .

$$
\begin{array}{l} \text{ced by } \left(\right. a, b, c \left. \right) \left. ? \right. \\ \text{or} \\ \text{or} \end{array}
$$

Access $Q \, [\, 5 \,]$:

• $a = 0, b = 0$: not enough solutions

• $a = 1, b = 1$: enough! 3 solutions smaller than $(1, 1,)$ • Look for the second solution of $B(1, _{_}) : a = 1, b = 1, c = 2$

A not so easy quer $Q(a, c, b) = A(a, b) \wedge B(a, b)$ \overline{c}

Direct Access for lexicographical order induced by (a, c, b) ? **Precomputation** $O(|\mathbb{D}|^2)$ • Access time $O(|\log |D|)$

$$
\overset{\cdot \blacktriangledown}{b}, c \;) \; .
$$

A not so easy quer $Q(a, c, b) = A(a, b) \wedge B(a)$ a) (b) (c

Direct Access for lexicographical order induced by Γ **Precomputation** $O(|\mathbb{D}|^2)$

• Access time $O(|\log |D|)$

Reduces to multiplying two $\{0, 1\}$ -matrices M, N over \mathbb{N} :

- $(i, j) \in A$ iff $M[i, j] = 1, (j, k) \in N$ iff $N[j, k] = 1$
- $\#Q(i,j,) = (MN) [i,j]$
- Direct Access can be used to find $\#Q(i,j,)$ with $O(|\log |D|)$ queries.

$$
\overset{\cdot \blacktriangledown}{b}, c \;) \; .
$$

$$
\begin{array}{l} \textbf{uced by} \;\; (\;a,c,b\;)\; \textbf{?}\\ \textbf{)} \\ \textbf{)} \end{array}
$$

Characterizing preprocessing time Given a query Q and order π on its variables, we can compute ι (Q, π) such that:

Characterizing preprocessing time Given a query Q and order π on its variables, we can compute ι (Q, π) such that:

• Tractable Direct access for Q on D :

Characterizing preprocessing time Given a query Q and order π on its variables, we can compute $\iota(Q, \pi)$ such that: l,

• Tractable Direct access for Q on D :

preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(|Q,\pi|)}\right)$.

Characterizing preprocessing time Given a query Q and order π on its variables, we can compute $\iota(Q, \pi)$ such that: l
.

- Tractable Direct access for Q on D :
	- preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(|Q,\pi|)}\right)$.
	- \blacksquare access $O((\log |D|))$

1. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries, N. Carmeli, N. Tziavelis, W. Gatterbauer, B. Kimelfeld, M. Riedewald 2. Tight Fine-Grained Bounds for Direct Access on Join Queries, K. Bringmann, N. Carmeli, S. Mengel

Characterizing preprocessing time Given a query Q and order π on its variables, we can compute $\iota(Q, \pi)$ such that: l
.

- Tractable Direct access for Q on D :
	- preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(|Q,\pi|)}\right)$.
	- \blacksquare access $O((\log |D|))$
- Tight fine-grained lower bounds:

Characterizing preprocessing time Given a query Q and order π on its variables, we can compute ι (Q, π) such that: l
.

- Tractable Direct access for Q on D :
	- preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(|Q,\pi|)}\right)$.
	- \blacksquare access $O(\log |D|)$ $\overline{}$
- Tight fine-grained lower bounds:
	- if possible with $O(|D|^k)$ preprocessing with $k < \iota(Q, \pi)$

Characterizing preprocessing time Given a query Q and order π on its variables, we can compute ι (Q, π) such that: l
.

- Tractable Direct access for Q on D :
	- preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(|Q,\pi|)}\right)$.
	- \blacksquare access $O(\log |D|)$ $\overline{}$
- Tight fine-grained lower bounds:
	- if possible with $O(|D|^k)$ preprocessing with $k < \iota(Q, \pi)$
	- \blacksquare then Zero-Clique Conjecture is false

(we can find 0-weighted k-cliques in graphs in time $\langle |G|^{k-\epsilon}$)

Characterizing preprocessing time Given a query Q and order π on its variables, we can compute $\iota(Q, \pi)$ such that: l
.

- Tractable Direct access for Q on D :
	- preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(|Q,\pi|)}\right)$.
	- \blacksquare access $O(\log |D|)$ $\overline{}$
- Tight fine-grained lower bounds:
	- if possible with $O(|D|^k)$ preprocessing with $k < \iota(Q, \pi)$
	- \blacksquare then Zero-Clique Conjecture is false

(we can find 0-weighted k-cliques in graphs in time $\langle |G|^{k-\epsilon}$)

• Function ι closely related to fractional hypertree width.

End of the story?

So, if we understand everything for Direct Access and lexicographical orders, what is our contribution?

Signed Join Queries

$$
Q = \bigwedge_{i=1}^{k} P_i \left(\mathbf{z_i} \right) \bigwedge_{i=1}^{l} \neg N_i
$$

Negation interpreted over a given d

U_i ($\mathbf{z_i}$) $$

$$
Q = \bigwedge_{i=1}^{k} P_i \left(\mathbf{z_i} \right) \bigwedge_{i=1}^{l} \neg N_i
$$

Negation interpreted over a given d

$J_i^-(\mathbf{z_i})$ $$

$$
Q = \bigwedge_{i=1}^{k} P_i \left(\mathbf{z_i} \right) \bigwedge_{i=1}^{l} \neg N_i
$$

Negation interpreted over a given d

$J_i^-(\mathbf{z_i})$ $$

$$
Q = \bigwedge_{i=1}^{k} P_i \left(\mathbf{z_i} \right) \bigwedge_{i=1}^{l} \neg N
$$

Negation interpreted over a given d

- $\neg N(x_1, ..., x_k)$ encoded with $|D|^k \#N$ tuples.
- Relation with SAT: $\neg N$ is $x_1 \lor \neg x_2 \lor x_3$

\bar{U}_i ($\mathbf{z_i}$) $$

Positive Encoding not C

 Q ($x_1,...,x_n$) $\,=\, \neg N\,(\,x_1,...,x_n\,)$, domain $\{0,1\}.$

N

 x_1 x_2 x_3

1 0 1

0 1 0

Positive encoding: preprocessing

- \bullet Q
- \bullet Q
- \bullet Q
- \bullet Q

 Q ($x_1,...,x_n$) $\,=\, \neg N\,(\,x_1,...,x_n\,)$, domain $\{0,1\}.$

Positive encoding: preprocessing $O(2^n)$

- \bullet Q ([0]
- \bullet Q (
-
-

N x_1 x_2 x_3 1 0 1 0 1 0

 $\bigg)$

$$
\mathbb{D} \left[1 \right] ? x_1 = 0, x_2 = 0, x_3 = 0 \text{ ie}
$$

$$
\mathbb{D} \left[2 \right] ?
$$

 \bullet $Q \in \mathbb{D}$ $\{3\}$?

 \bullet $Q \in D$ k ?

 Q ($x_1,...,x_n$) $\,=\, \neg N\,(\,x_1,...,x_n\,)$, domain $\{0,1\}.$

Positive encoding: preprocessing $O(2^n)$

- \bullet Q (\bullet Q ([0]
	- $\left[1\right]$
- \bullet Q ($|$
-

N x_1 x_2 x_3 1 0 1 0 1 0

 $\bigg)$

$$
\begin{array}{c}\n\mathbb{D} \setminus [1] \mathbin{?} x_1 = 0, x_2 = 0, x_3 = 0 \text{ ie} \\
\mathbb{D} \setminus [2] \mathbin{?} x_1 = 0, x_2 = 0, x_3 = 1 \text{ ie} \\
\mathbb{D} \setminus [3] \mathbin{?}\n\end{array}
$$

 \bullet $Q \in D$ $\lceil k \rceil$?

 Q ($x_1,...,x_n$) $\,=\, \neg N\,(\,x_1,...,x_n\,)$, domain $\{0,1\}.$

Positive encoding: preprocessing $O(2^n)$

N

 $\bigg)$

D) [1] ?
$$
x_1 = 0, x_2 = 0, x_3 = 0
$$
 ie
\n
$$
\begin{array}{l}\n2 \\
\text{D})\n\end{array}\n\begin{array}{l}\n2 \\
\text{I}^2 \\
\text{I}^3\n\end{array}\n\begin{array}{l}\nx_1 = 0, x_2 = 0, x_3 = 1 \text{ ie} \\
\text{I}^4\n\end{array}
$$
\n
$$
\begin{array}{l}\n\text{D})\n\end{array}\n\begin{array}{l}\n3 \\
\text{I}^3\n\end{array}
$$
\n
$$
= 0, x_2 = 1, x_3 = 0
$$
ie [2]₂?
\nD) [k] ?

 Q ($x_1,...,x_n$) $\,=\, \neg N\,(\,x_1,...,x_n\,)$, domain $\{0,1\}.$

Positive encoding: preprocessing $O(2^n)$

 $\big)$

$$
Q(\mathbb{D}) [1] ? x_1 = 0, x_2 = 0, x_3 = 0 \text{ ie}
$$

\n
$$
[0]_2!
$$

\n
$$
Q(\mathbb{D}) [2] ? x_1 = 0, x_2 = 0, x_3 = 1 \text{ ie}
$$

\n
$$
[1]_2!
$$

\n
$$
Q(\mathbb{D}) [3] ?
$$

\n
$$
x_1 = 0, x_2 = 1, x_3 = 1 \text{ ie } [3]_2!
$$

\n
$$
Q(\mathbb{D}) [k] ?
$$

 Q ($x_1,...,x_n$) $\,=\, \neg N\,(\,x_1,...,x_n\,)$, domain $\{0,1\}.$

Positive encoding: preprocessing $O(2^n)$

- \bullet Q (\bullet Q ([0]
	- $\left[1\right]$
- \bullet Q (
	- $x_1 =$
- \bullet Q (

where

 $\big)$

$$
Q(\mathbb{D}) [1] ? x_1 = 0, x_2 = 0, x_3 = 0 \text{ ie}
$$

\n
$$
\begin{bmatrix} 0 \\ 2 \end{bmatrix}
$$

\n
$$
Q(\mathbb{D}) [2] ? x_1 = 0, x_2 = 0, x_3 = 1 \text{ ie}
$$

\n
$$
\begin{bmatrix} 1 \\ 2 \end{bmatrix}
$$

\n
$$
Q(\mathbb{D}) [3] ?
$$

\n
$$
x_1 = 0, x_2 = 1, x_3 = 1 \text{ ie } [3] \frac{1}{2}!
$$

\n
$$
Q(\mathbb{D}) [k] ? [k - 1 + p_k] \frac{1}{2}
$$

\nwhere $p_k = \{t \in N | t \le k\}$

 Q ($x_1,...,x_n$) $\,=\, \neg N\,(\,x_1,...,x_n\,)$, domain $\{0,1\}.$

Positive encoding: preprocessing $O(2^n)$

$$
Q(\mathbb{D}) [1] ? x_1 = 0, x_2 = 0, x_3 = 0 \text{ ie}
$$

\n
$$
\begin{bmatrix} 0 \\ 2 \end{bmatrix}
$$

\n
$$
Q(\mathbb{D}) [2] ? x_1 = 0, x_2 = 0, x_3 = 1 \text{ ie}
$$

\n
$$
\begin{bmatrix} 1 \\ 2 \end{bmatrix}
$$

\n
$$
Q(\mathbb{D}) [3] ?
$$

\n
$$
x_1 = 0, x_2 = 1, x_3 = 1 \text{ ie } [3] \frac{1}{2}!
$$

\n
$$
Q(\mathbb{D}) [k] ? [k - 1 + p_k] \frac{1}{2}
$$

\nwhere $p_k = \{t \in N | t \le k\}$

Linear preprocessing!

 $\big)$

 $Q_1 = R(1,2,3) \wedge S(1,2) \wedge T(2,3) \wedge U(3,1)$ $Q_2 = S(1,2) \wedge T(2,3) \wedge U(3,1)$

 $Q_1 = R(1,2,3) \wedge S(1,2) \wedge T(2,3) \wedge U(3,1)$ $Q_2 = S(1,2) \wedge T(2,3) \wedge U(3,1)$

linear preprocessing

 $Q_1 = R(1,2,3) \wedge S(1,2) \wedge T(2,3) \wedge U(3,1)$ $Q_2 = S(1,2) \wedge T(2,3) \wedge U(3,1)$

linear preprocessing non-linear preprocessing

 $Q_1 = R(1,2,3) \wedge S(1,2) \wedge T(2,3) \wedge U(3,1)$ $Q_2 = S(1,2) \wedge T(2,3) \wedge U(3,1)$

Subqueries may be harder to solve than the query itself!

linear preprocessing non-linear preprocessing

Subqueries and negative atoms

$$
Q_1' = \neg R (1,2,3)
$$

$$
\land S (1,2) \land T (2,3) \land U (3,1)
$$

$Q_2 = S(1,2) \wedge T(2,3) \wedge U(3,1)$

non-linear preprocessing (triangle)

Subqueries and negative atoms

 $Q_1' = \neg R(1,2,3)$ $\wedge S(1,2) \wedge T(2,3) \wedge U(3,1)$

Equivalent to Q_2 if $R = \emptyset$

$Q_2 = S(1,2) \wedge T(2,3) \wedge U(3,1)$

non-linear preprocessing (triangle)

Subqueries and negative atoms

$$
Q_1' = \neg R(1,2,3)
$$

$$
\land S(1,2) \land T(2,3) \land U(3,1)
$$
 Q₂

Equivalent to Q_2 if $R = \emptyset$

DA for $Q = P \wedge N$ implies DA for $Q = P \wedge N'$ for every $N' \subseteq N$!

$= S (1, 2) \wedge T (2, 3) \wedge U (3, 1)$

non-linear preprocessing (triangle)

Measuring hardness of SJQ

Good candidate for $Q = Q^+ \wedge Q^-$:

Signed-HyperOrder Width $\mathit{sflow}\;(\;Q, \pi\;) \;=\; \max_{Q' \;\subseteq\; Q^-} \; \iota \;\big(\;Q^+ \wedge Q', \pi\,\big)$

T

For Q a (positive) JQ, and π a variable ordering, we can solve DA with

- Preprocessing $\tilde{O}(|D|^{\iota(Q,\pi)})$
- Access time $O((\log |D|))$

Measuring hardness of SJQ

Good candidate for $Q = Q^+ \wedge Q^-$:

Signed-HyperOrder Width $\mathit{sflow}\;(\;Q, \pi\;) \;=\; \max_{Q' \;\subseteq\; Q^-} \; \iota \;\big(\;Q^+ \wedge Q', \pi\,\big)$

T

For Q a signed JQ, and π a variable ordering, we can solve DA with

- Preprocessing $\tilde{O}(|\mathbb{D}|^{sfhow(|Q,\pi|)})$
- Access time $O((\log |D|))$

Our contribution : new island of tractability for Signed JQ!

A word on sfhow

Signed Fractional HyperOrder Width (and incidentally, our result) generalizes:

- \bullet β -acyclicity (#SAT and #NCQ are already known tractable)
- *signed*-acyclicity (Model Checking for SCQ known to be tractable)
- Nest set width (SAT / Model Checking for NCQ known to be tractable)
- A non-fractional version show can be defined (better combined complexity)

Basically, everything that is known to be tractable on SCQ/NCQ.

1. Understanding model counting for β-acyclic CNF-formulas, J. Brault-Baron, F. C., S. Mengel

2. De la pertinence de l'énumération: complexité en logiques propositionnelle et du premier ordre, J. Brault-Baron

3. Tractability Beyond ß-Acyclicity for Conjunctive Queries with Negation, M. Lanzinger

Our algorithm: a circuit approach

Relational Circuits

Relational Circuits

Relational Circuits

Ordered Relational Circuits

Factorized representation of relation $R \subseteq D^X$:

- Inputs gates : ⊤ & ⊥
- Decision gates
- Cartesian products: \times -gates

Ordered Relational Circuits

Ordered: decision gates below x_i only mention x_j with $j > i$.

Factorized representation of relation $R \subseteq D^X$:

- Inputs gates : ⊤ & ⊥
- **Decision** gates
- Cartesian products: \times -gates

Direct Access on Relational Circuits

- For C on domain D, variables $x_1, ..., x_n$, DA possible :
	- Preprocessing: $O(|C| \log |D|)$
	- Access time: $O(n \log |D|)$

26

Idea : for each gate v over x_i and for each domain value d

Idea : for each gate v over x_i and for each domain value d

Idea : for each gate v over x_i and for each domain value d

compute the size of the relation where x_i is set to a value $d' \le d$

27

Preprocessing

Preprocessing

Compute the 7^{th} solution \rightarrow 111

Compute the 13th solution \rightarrow 221

Solving DA for SCQ $\label{eq:SCQ} \text{SCQ } Q\ (\ x_1, ..., x_n\)\ , \pi = \ (\ x_1, ..., x_n\)\ .$ Preprocessing:

1. Construct π -ordered circuit C of size $\tilde{O}(|D|^{sfhow(Q,\pi))}$ 2. Preprocess C in time $O(|C| \log |D|)$. Direct Access : 1. Directly on C

2. in time $O(n \log |D|)$!

Solving DA for SCQ $\label{eq:SCQ} \text{SCQ } Q\ (\ x_1, ..., x_n\)\ , \pi = \ (\ x_1, ..., x_n\)\ .$ Preprocessing:

1. Construct π -ordered circuit C of size $\tilde{O}(|D|^{sfhow(Q,\pi))}$ 2. Preprocess C in time $O(|C| \log |D|)$. Direct Access :

> 1. Directly on C 2. in time $O(n \log |D|)$!

 Q , n considered constant here!

- The hidden constants $f(Q)$ are exponential in $|Q|$ for bounded $sfhow (Q).$
- But polynomial in Q for bounded $show(Q)$ (non fractional question).

Solving DA for SCQ SCQ $Q(x_1, ..., x_n)$, $\pi = (x_1, ..., x_n)$. Preprocessing: $\tilde{O}(|\mathbb{D}|^{sfhow(\langle Q, \pi\rangle)})$ 1. Construct π -ordered circuit C of size $\tilde{O}(|D|^{sfhow(Q,\pi))}$ **∫** 2. Preprocess C in time $O(|C| \log |D|)$. Direct Access : 1. Directly on C 2. in time $O(n \log |D|)$!

 Q, n considered constant here!

- The hidden constants $f(Q)$ are exponential in $|Q|$ for bounded $sfhow (Q).$
- But polynomial in Q for bounded $show(Q)$ (non fractional question).

Solving DA for SCQ SCQ $Q(x_1, ..., x_n)$, $\pi = (x_1, ..., x_n)$. Preprocessing: $\tilde{O}(|\mathbb{D}|^{sfhow(\langle Q, \pi\rangle)})$ 1. Construct π -ordered circuit C of size $\tilde{O}(|D|^{sfhow(Q,\pi))}$ **∫** 2. Preprocess C in time $O(|C| \log |D|)$. Direct Access : $O(|\log |D|)$ 1. Directly on C 2. in time $O(n \log |D|)$!

 Q, n considered constant here!

- The hidden constants $f(Q)$ are exponential in $|Q|$ for bounded $sfhow (Q).$
- But polynomial in Q for bounded $show(Q)$ (non fractional question).

DPLL: building circuits

Compilation based on a variation of DPLL :

1.
$$
Q(\mathbb{D}) = \biguplus_{d \in \mathbb{D}} [x_1 = d] \times Q[x_1 = d] (\mathbb{D})
$$

2. Q (\mathbb{D}) = Q ₁ (\mathbb{D}) \times Q ₂ (\mathbb{D}) if $Q=Q$ ₁ \wedge Q ₂ with $var\left(\right. Q_{1} \right)$ \cap $var\left(\right. Q_{2} \right)$ = \emptyset

3. Top down induction + caching

<https://florent.capelli.me/cytoscape/dpll.html>

A comment on the complexity of DPLL

- If implemented this way, gives a $|\mathbb{D}|^{sfhow(Q)+1}$ complexity...
- Workaround: reencode the domain in binary and build a circuit iteratively testing the bits of each variable.

Going further

Related results

- 1. Extension to ∃SJQ:
	- Last variable in C can be existentially projected without increase in circuit size
	- Give DA for $\exists x_k,...,x_n Q$ ($x_1,...,x_n$) .
- 2. Semi-ring Aggregation
	- $w: X \times D \rightarrow (\mathbb{K}, \oplus, \otimes)$
	- Compute $\bigoplus_{\tau \in Q(\mathbb{D})} \bigotimes_{x \in X} w(x, \tau(x))$
- 3. Lowerbounds: cannot do better than $|D|^{sfhow(Q)}$ preprocessing.

35

1. Aggregation $Q\left(\,x_1,...,x_k,F\left(\,x_{k+1},...,x_n\,\right)\,\,\right)$, generalizing work by I. Eldar, N. Carmeli, B. Kimelfeld.

1. Aggregation $Q\left(\,x_1,...,x_k,F\left(\,x_{k+1},...,x_n\,\right)\,\,\right)$, generalizing work by I. Eldar, N. Carmeli, B. Kimelfeld. 2. Understanding combined complexity for $sflow (Q)$, the fractional version of $show$

- 1. Aggregation
- $Q\left(\,x_1,...,x_k,F\left(\,x_{k+1},...,x_n\,\right)\,\,\right)$, generalizing work by I. Eldar, N. Carmeli, B. Kimelfeld.
- 2. Understanding combined complexity for $sflow (Q)$, the fractional version of $show$
- 3. Comparing $show$ and β -hypertree width (the most general parameter for which the complexity is still unknown).

