
Direct Access for Conjunctive
Queries with Negations

Florent Capelli, Oliver Irwin
CRIL, Université d’Artois

Séminaire KRDB
23 Janvier 2025

1



Direct Access on Join Queries

2



Join Queries

Join Query : 𝑄 ( 𝑥1,…,𝑥𝑛 ) = ⋀
𝑖 = 1

𝑘
𝑅𝑖 ( 𝐱𝐢 )

where 𝐱𝐢 is a tuple over 𝑋 = {𝑥1,…,𝑥𝑛}

3



Join Queries

Join Query : 𝑄 ( 𝑥1,…,𝑥𝑛 ) = ⋀
𝑖 = 1

𝑘
𝑅𝑖 ( 𝐱𝐢 )

where 𝐱𝐢 is a tuple over 𝑋 = {𝑥1,…,𝑥𝑛}

Example:
𝑄 ( 𝑐𝑖𝑡𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑛𝑎𝑚𝑒, 𝑖𝑑 ) = 𝑃𝑒𝑜𝑝𝑙𝑒 ( 𝑖𝑑,𝑛𝑎𝑚𝑒, 𝑐𝑖𝑡𝑦 ) ∧ 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑠 ( 𝑐𝑖𝑡𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 )

People

id name city

1 Alice

2 Bob Lens

3 Chiara

4 Djibril

5 Émile Dortmund

6 Francesca

Capitals

city country

Germany

France

Italy

Paris

Rome

Berlin

Rome

Berlin

Paris

Rome

3.1



Join Queries

Join Query : 𝑄 ( 𝑥1,…,𝑥𝑛 ) = ⋀
𝑖 = 1

𝑘
𝑅𝑖 ( 𝐱𝐢 )

where 𝐱𝐢 is a tuple over 𝑋 = {𝑥1,…,𝑥𝑛}

Example:
𝑄 ( 𝑐𝑖𝑡𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑛𝑎𝑚𝑒, 𝑖𝑑 ) = 𝑃𝑒𝑜𝑝𝑙𝑒 ( 𝑖𝑑,𝑛𝑎𝑚𝑒, 𝑐𝑖𝑡𝑦 ) ∧ 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑠 ( 𝑐𝑖𝑡𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 )

People

id name city

1 Alice

2 Bob Lens

3 Chiara

4 Djibril

5 Émile Dortmund

6 Francesca

Capitals

city country

Germany

France

Italy

Paris

Rome

Berlin

Rome

Berlin

Paris

Rome

3.2



Join Queries

Join Query : 𝑄 ( 𝑥1,…,𝑥𝑛 ) = ⋀
𝑖 = 1

𝑘
𝑅𝑖 ( 𝐱𝐢 )

where 𝐱𝐢 is a tuple over 𝑋 = {𝑥1,…,𝑥𝑛}

Example:
𝑄 ( 𝑐𝑖𝑡𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑛𝑎𝑚𝑒, 𝑖𝑑 ) = 𝑃𝑒𝑜𝑝𝑙𝑒 ( 𝑖𝑑,𝑛𝑎𝑚𝑒, 𝑐𝑖𝑡𝑦 ) ∧ 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑠 ( 𝑐𝑖𝑡𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 )

People

id name city

1 Alice

2 Bob Lens

3 Chiara

4 Djibril

5 Émile Dortmund

6 Francesca

Capitals

city country

Germany

France

Italy

Paris

Rome

Berlin

Rome

Berlin

Paris

Rome

𝑄 ( 𝔻 )

city country name id

Paris France Alice 1

Rome Italy Chiara 3

Berlin Germany Djibril 4

Rome Italy Francesca 6

3.3



Direct Access

Quickly access 𝑄 ( 𝔻 ) [ 𝑘 ] , the 𝑘𝑡ℎ element of 𝑄 ( 𝔻 ) .
𝑄 ( 𝔻 )

city country name id

Paris France Alice 1

Berlin Germany Djibril 4

Rome Italy Francesca 6

Rome Italy Chiara 3

4



Direct Access

Quickly access 𝑄 ( 𝔻 ) [ 𝑘 ] , the 𝑘𝑡ℎ element of 𝑄 ( 𝔻 ) .
𝑄 ( 𝔻 )

city country name id

Paris France Alice 1

Berlin Germany Djibril 4

Rome Italy Francesca 6

Rome Italy Chiara 3

𝑄 ( 𝔻 ) [ 2 ] ?
( 𝑅𝑜𝑚𝑒, 𝐼𝑡𝑎𝑙𝑦,𝐶ℎ𝑖𝑎𝑟𝑎, 3 ) .

4.1



Naive Direct Access

Naive algorithm: materialize 𝑄 ( 𝔻 )  in an array, . Access.
city country name id

… … … …

Berlin Germany Djibril 4

… … … …

Paris France Alice 1

… … … …

Rome Italy Chiara 3

Rome Italy Francesca 6

… … … …

𝑄 ( 𝔻 ) [ 1432 ] = ??

sort it

5



Naive Direct Access

Naive algorithm: materialize 𝑄 ( 𝔻 )  in an array, . Access.
city country name id

… … … …

Berlin Germany Djibril 4

… … … …

Paris France Alice 1

… … … …

Rome Italy Chiara 3

Rome Italy Francesca 6

… … … …

𝑄 ( 𝔻 ) [ 1432 ] = ??

sort it

Precomputation : 𝑂 ( #𝑄 ( 𝔻 ) )  at least (may be worse), very costly

Access : 𝑂 ( 1 ) , nearly free

5.1



Naive Direct Access

Naive algorithm: materialize 𝑄 ( 𝔻 )  in an array, . Access.
city country name id

… … … …

Berlin Germany Djibril 4

… … … …

Paris France Alice 1

… … … …

Rome Italy Chiara 3

Rome Italy Francesca 6

… … … …

𝑄 ( 𝔻 ) [ 1432 ] = ??

sort it

Precomputation : 𝑂 ( #𝑄 ( 𝔻 ) )  at least (may be worse), very costly

Access : 𝑂 ( 1 ) , nearly free

5.2



Orders ?

1. Order by weights

2. Lexicographical orders

order on the vars of 𝑄
order on domain 𝐷 of 𝔻

6



Orders ?

1. Order by weights

2. Lexicographical orders

order on the vars of 𝑄
order on domain 𝐷 of 𝔻

Variable order ( 𝑐𝑖𝑡𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑛𝑎𝑚𝑒, 𝑖𝑑 ) :
city country name id

Berlin Germany Djibril 4

Paris France Alice 1

Rome Italy Chiara 3

Rome Italy Francesca 6

6.1



Orders ?

1. Order by weights

2. Lexicographical orders

order on the vars of 𝑄
order on domain 𝐷 of 𝔻

Variable order ( 𝑐𝑖𝑡𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑛𝑎𝑚𝑒, 𝑖𝑑 ) :
city country name id

Berlin Germany Djibril 4

Paris France Alice 1

Rome Italy Chiara 3

Rome Italy Francesca 6

In this talk: only lexicographical orders.

6.2



Applications

Direct Access generalizes many tasks that have been previously studied:
Uniform sampling without repetitions
Ranked enumeration

Counting queries:
how many answers between 𝜏1 and 𝜏2?
how many answers extend a partial answer etc.

7



Beating the Naive Approach

8



Beating Naive Direct Access

Naive Direct Access:
Preprocessing at least 𝑂 ( #𝑄 ( 𝔻 ) ) .
Access time 𝑂 ( 1 ) .

Can we have better preprocessing and reasonable access time?

9



Beating Naive Direct Access

Naive Direct Access:
Preprocessing at least 𝑂 ( #𝑄 ( 𝔻 ) ) .
Access time 𝑂 ( 1 ) .

Can we have better preprocessing and reasonable access time?

“Ideal” complexity:
𝑂 ( |𝔻| )  preprocessing
𝑂 ( log |𝔻| )  access time

9.1



Complexity of Direct Access

Computing #𝑄 ( 𝔻 )  given 𝑄 and 𝔻 is #𝑃-hard.

No Direct Access algorithm with good guarantees for every 𝑄 and 𝔻.

10



Complexity of Direct Access

Computing #𝑄 ( 𝔻 )  given 𝑄 and 𝔻 is #𝑃-hard.

No Direct Access algorithm with good guarantees for every 𝑄 and 𝔻.

Data complexity assumption: for a fixed 𝑄, what is the best preprocessing 𝑓 ( |𝔻| )  for an
access time 𝑂 ( 𝑝𝑜𝑙𝑦𝑙𝑜𝑔|𝔻| ) ?

In this work, all presented complexity in data complexity will also be polynomial for
combined complexity.

10.1



An easy query?
𝑄 ( 𝑎, 𝑏, 𝑐 ) = 𝐴 ( 𝑎, 𝑏 ) ∧ 𝐵 ( 𝑏, 𝑐 ) .

a b c

11



An easy query?
𝑄 ( 𝑎, 𝑏, 𝑐 ) = 𝐴 ( 𝑎, 𝑏 ) ∧ 𝐵 ( 𝑏, 𝑐 ) .

a b c

Direct Access for lexicographical order induced by ( 𝑎, 𝑏, 𝑐 ) ?

Precomputation 𝑂 ( |𝔻| )

Access time 𝑂 ( log |𝔻| )

11.1



An easy query?
𝑄 ( 𝑎, 𝑏, 𝑐 ) = 𝐴 ( 𝑎, 𝑏 ) ∧ 𝐵 ( 𝑏, 𝑐 ) .

a b c

Direct Access for lexicographical order induced by ( 𝑎, 𝑏, 𝑐 ) ?

Precomputation 𝑂 ( |𝔻| )

Access time 𝑂 ( log |𝔻| )

a b

0 0

1 1

2 1

b c

0 0

0 1

0 2

1 1

1 2

Precomputation :
#𝑄 ( 0, 0, _ ) = 3

#𝑄 ( 1, 1, _ ) = 2

#𝑄 ( 2, 1, _ ) = 2

11.2



An easy query?
𝑄 ( 𝑎, 𝑏, 𝑐 ) = 𝐴 ( 𝑎, 𝑏 ) ∧ 𝐵 ( 𝑏, 𝑐 ) .

a b c

Direct Access for lexicographical order induced by ( 𝑎, 𝑏, 𝑐 ) ?

Precomputation 𝑂 ( |𝔻| )

Access time 𝑂 ( log |𝔻| )

a b

0 0

1 1

2 1

b c

0 0

0 1

0 2

1 1

1 2

Precomputation :
#𝑄 ( 0, 0, _ ) = 3

#𝑄 ( 1, 1, _ ) = 2

#𝑄 ( 2, 1, _ ) = 2

Access 𝑄 [ 5 ] :
𝑎 = 0, 𝑏 = 0: not enough solutions
𝑎 = 1, 𝑏 = 1: enough! 3 solutions smaller than ( 1, 1, _ )
Look for the second solution of 𝐵 ( 1, _ ) : 𝑎 = 1, 𝑏 = 1, 𝑐 = 2

11.3



A not so easy query
𝑄 ( 𝑎, 𝑐, 𝑏 ) = 𝐴 ( 𝑎, 𝑏 ) ∧ 𝐵 ( 𝑏, 𝑐 ) .

a b c

Direct Access for lexicographical order induced by ( 𝑎, 𝑐, 𝑏 ) ?

Precomputation 𝑂 ( |𝔻|2 )
Access time 𝑂 ( log |𝔻| )

12



A not so easy query
𝑄 ( 𝑎, 𝑐, 𝑏 ) = 𝐴 ( 𝑎, 𝑏 ) ∧ 𝐵 ( 𝑏, 𝑐 ) .

a b c

Direct Access for lexicographical order induced by ( 𝑎, 𝑐, 𝑏 ) ?

Precomputation 𝑂 ( |𝔻|2 )
Access time 𝑂 ( log |𝔻| )

Reduces to multiplying two {0, 1}-matrices 𝑀,𝑁 over ℕ:
( 𝑖, 𝑗 ) ∈ 𝐴 iff 𝑀 [ 𝑖, 𝑗 ] = 1, ( 𝑗, 𝑘 ) ∈ 𝑁 iff 𝑁 [ 𝑗, 𝑘 ] = 1

#𝑄 ( 𝑖, 𝑗, _ ) = ( 𝑀𝑁 ) [ 𝑖, 𝑗 ]

Direct Access can be used to find #𝑄 ( 𝑖, 𝑗, _ )  with 𝑂 ( log |𝔻| )  queries.

12.1



Characterizing preprocessing time

Given a query 𝑄 and order 𝜋 on its variables, we can compute 𝜄 ( 𝑄,𝜋 )  such that:

1. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries, N. Carmeli, N. Tziavelis, W. Gatterbauer, B. Kimelfeld, M. Riedewald
2. Tight Fine-Grained Bounds for Direct Access on Join Queries, K. Bringmann, N. Carmeli, S. Mengel

13



Characterizing preprocessing time

Given a query 𝑄 and order 𝜋 on its variables, we can compute 𝜄 ( 𝑄,𝜋 )  such that:

1. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries, N. Carmeli, N. Tziavelis, W. Gatterbauer, B. Kimelfeld, M. Riedewald
2. Tight Fine-Grained Bounds for Direct Access on Join Queries, K. Bringmann, N. Carmeli, S. Mengel

Tractable Direct access for 𝑄 on 𝔻:

13.1



Characterizing preprocessing time

Given a query 𝑄 and order 𝜋 on its variables, we can compute 𝜄 ( 𝑄,𝜋 )  such that:

1. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries, N. Carmeli, N. Tziavelis, W. Gatterbauer, B. Kimelfeld, M. Riedewald
2. Tight Fine-Grained Bounds for Direct Access on Join Queries, K. Bringmann, N. Carmeli, S. Mengel

Tractable Direct access for 𝑄 on 𝔻:

preprocessing ̃

𝑂( |𝔻|𝜄 ( 𝑄,𝜋 ) )

13.2



Characterizing preprocessing time

Given a query 𝑄 and order 𝜋 on its variables, we can compute 𝜄 ( 𝑄,𝜋 )  such that:

1. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries, N. Carmeli, N. Tziavelis, W. Gatterbauer, B. Kimelfeld, M. Riedewald
2. Tight Fine-Grained Bounds for Direct Access on Join Queries, K. Bringmann, N. Carmeli, S. Mengel

Tractable Direct access for 𝑄 on 𝔻:

preprocessing ̃

𝑂( |𝔻|𝜄 ( 𝑄,𝜋 ) )
access 𝑂 ( log |𝔻| )

13.3



Characterizing preprocessing time

Given a query 𝑄 and order 𝜋 on its variables, we can compute 𝜄 ( 𝑄,𝜋 )  such that:

1. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries, N. Carmeli, N. Tziavelis, W. Gatterbauer, B. Kimelfeld, M. Riedewald
2. Tight Fine-Grained Bounds for Direct Access on Join Queries, K. Bringmann, N. Carmeli, S. Mengel

Tractable Direct access for 𝑄 on 𝔻:

preprocessing ̃

𝑂( |𝔻|𝜄 ( 𝑄,𝜋 ) )
access 𝑂 ( log |𝔻| )

Tight fine-grained lower bounds:

13.4



Characterizing preprocessing time

Given a query 𝑄 and order 𝜋 on its variables, we can compute 𝜄 ( 𝑄,𝜋 )  such that:

1. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries, N. Carmeli, N. Tziavelis, W. Gatterbauer, B. Kimelfeld, M. Riedewald
2. Tight Fine-Grained Bounds for Direct Access on Join Queries, K. Bringmann, N. Carmeli, S. Mengel

Tractable Direct access for 𝑄 on 𝔻:

preprocessing ̃

𝑂( |𝔻|𝜄 ( 𝑄,𝜋 ) )
access 𝑂 ( log |𝔻| )

Tight fine-grained lower bounds:
if possible with ̃

𝑂 ( |𝔻|
𝑘 )  preprocessing with 𝑘 < 𝜄 ( 𝑄,𝜋 )

13.5



Characterizing preprocessing time

Given a query 𝑄 and order 𝜋 on its variables, we can compute 𝜄 ( 𝑄,𝜋 )  such that:

1. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries, N. Carmeli, N. Tziavelis, W. Gatterbauer, B. Kimelfeld, M. Riedewald
2. Tight Fine-Grained Bounds for Direct Access on Join Queries, K. Bringmann, N. Carmeli, S. Mengel

Tractable Direct access for 𝑄 on 𝔻:

preprocessing ̃

𝑂( |𝔻|𝜄 ( 𝑄,𝜋 ) )
access 𝑂 ( log |𝔻| )

Tight fine-grained lower bounds:
if possible with ̃

𝑂 ( |𝔻|
𝑘 )  preprocessing with 𝑘 < 𝜄 ( 𝑄,𝜋 )

then Zero-Clique Conjecture is false
(we can find 0-weighted 𝑘-cliques in graphs in time < |𝐺|𝑘 − 𝜀)

13.6



Characterizing preprocessing time

Given a query 𝑄 and order 𝜋 on its variables, we can compute 𝜄 ( 𝑄,𝜋 )  such that:

1. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries, N. Carmeli, N. Tziavelis, W. Gatterbauer, B. Kimelfeld, M. Riedewald
2. Tight Fine-Grained Bounds for Direct Access on Join Queries, K. Bringmann, N. Carmeli, S. Mengel

Tractable Direct access for 𝑄 on 𝔻:

preprocessing ̃

𝑂( |𝔻|𝜄 ( 𝑄,𝜋 ) )
access 𝑂 ( log |𝔻| )

Tight fine-grained lower bounds:
if possible with ̃

𝑂 ( |𝔻|
𝑘 )  preprocessing with 𝑘 < 𝜄 ( 𝑄,𝜋 )

then Zero-Clique Conjecture is false
(we can find 0-weighted 𝑘-cliques in graphs in time < |𝐺|𝑘 − 𝜀)

Function 𝜄 closely related to fractional hypertree width.

13.7



End of the story?

So, if we understand everything for Direct Access and lexicographical orders, what is our

contribution?

14



Signed Join Queries

15



Definition

𝑄 = ⋀
𝑖 = 1

𝑘
𝑃𝑖 ( 𝐳𝐢 )  ⋀

𝑖 = 1

𝑙
¬𝑁𝑖 ( 𝐳𝐢 )

Negation interpreted over a given domain 𝐷:

16



Definition

𝑄 = ⋀
𝑖 = 1

𝑘
𝑃𝑖 ( 𝐳𝐢 )  ⋀

𝑖 = 1

𝑙
¬𝑁𝑖 ( 𝐳𝐢 )

Negation interpreted over a given domain 𝐷:

𝑁

𝑥1 𝑥2 𝑥3

0 1 0

16.1



Definition

𝑄 = ⋀
𝑖 = 1

𝑘
𝑃𝑖 ( 𝐳𝐢 )  ⋀

𝑖 = 1

𝑙
¬𝑁𝑖 ( 𝐳𝐢 )

Negation interpreted over a given domain 𝐷:

𝑁

𝑥1 𝑥2 𝑥3

0 1 0

¬𝑁 on {0, 1}

𝑥1 𝑥2 𝑥3

0 0 0

0 0 1

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

16.2



Definition

𝑄 = ⋀
𝑖 = 1

𝑘
𝑃𝑖 ( 𝐳𝐢 )  ⋀

𝑖 = 1

𝑙
¬𝑁𝑖 ( 𝐳𝐢 )

Negation interpreted over a given domain 𝐷:

𝑁

𝑥1 𝑥2 𝑥3

0 1 0

¬𝑁 on {0, 1}

𝑥1 𝑥2 𝑥3

0 0 0

0 0 1

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

¬𝑁 ( 𝑥1,…,𝑥𝑘 )  encoded with |𝐷|𝑘 − #𝑁 tuples.
Relation with SAT: ¬𝑁 is 𝑥1 ∨ ¬𝑥2 ∨ 𝑥3

16.3



Positive Encoding not Optimal

𝑄 ( 𝑥1,…,𝑥𝑛 ) = ¬𝑁 ( 𝑥1,…,𝑥𝑛 ) , domain {0, 1}.

Positive encoding: preprocessing 𝑂 ( 2𝑛 )

N

𝑥1 𝑥2 𝑥3

1 0 1

𝑄 ( 𝔻 ) [ 1 ] ? 

𝑄 ( 𝔻 ) [ 2 ] ? 

𝑄 ( 𝔻 ) [ 3 ] ?

𝑄 ( 𝔻 ) [ 𝑘 ] ? 

0 1 0

17



Positive Encoding not Optimal

𝑄 ( 𝑥1,…,𝑥𝑛 ) = ¬𝑁 ( 𝑥1,…,𝑥𝑛 ) , domain {0, 1}.

Positive encoding: preprocessing 𝑂 ( 2𝑛 )

N

𝑥1 𝑥2 𝑥3

1 0 1

𝑄 ( 𝔻 ) [ 1 ] ? 

𝑄 ( 𝔻 ) [ 2 ] ? 

𝑄 ( 𝔻 ) [ 3 ] ?

𝑄 ( 𝔻 ) [ 𝑘 ] ? 

0 1 0

𝑥1 = 0,𝑥2 = 0,𝑥3 = 0 ie
[ 0 ]

2
!

17.1



Positive Encoding not Optimal

𝑄 ( 𝑥1,…,𝑥𝑛 ) = ¬𝑁 ( 𝑥1,…,𝑥𝑛 ) , domain {0, 1}.

Positive encoding: preprocessing 𝑂 ( 2𝑛 )

N

𝑥1 𝑥2 𝑥3

1 0 1

𝑄 ( 𝔻 ) [ 1 ] ? 

𝑄 ( 𝔻 ) [ 2 ] ? 

𝑄 ( 𝔻 ) [ 3 ] ?

𝑄 ( 𝔻 ) [ 𝑘 ] ? 

0 1 0

𝑥1 = 0,𝑥2 = 0,𝑥3 = 0 ie
[ 0 ]

2
!

𝑥1 = 0,𝑥2 = 0,𝑥3 = 1 ie
[ 1 ]

2
!

17.2



Positive Encoding not Optimal

𝑄 ( 𝑥1,…,𝑥𝑛 ) = ¬𝑁 ( 𝑥1,…,𝑥𝑛 ) , domain {0, 1}.

Positive encoding: preprocessing 𝑂 ( 2𝑛 )

N

𝑥1 𝑥2 𝑥3

1 0 1

𝑄 ( 𝔻 ) [ 1 ] ? 

𝑄 ( 𝔻 ) [ 2 ] ? 

𝑄 ( 𝔻 ) [ 3 ] ?

𝑄 ( 𝔻 ) [ 𝑘 ] ? 

0 1 0

𝑥1 = 0,𝑥2 = 0,𝑥3 = 0 ie
[ 0 ]

2
!

𝑥1 = 0,𝑥2 = 0,𝑥3 = 1 ie
[ 1 ]

2
!

𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 0 ie [ 2 ]
2
?

17.3



Positive Encoding not Optimal

𝑄 ( 𝑥1,…,𝑥𝑛 ) = ¬𝑁 ( 𝑥1,…,𝑥𝑛 ) , domain {0, 1}.

Positive encoding: preprocessing 𝑂 ( 2𝑛 )

N

𝑥1 𝑥2 𝑥3

1 0 1

𝑄 ( 𝔻 ) [ 1 ] ? 

𝑄 ( 𝔻 ) [ 2 ] ? 

𝑄 ( 𝔻 ) [ 3 ] ?

𝑄 ( 𝔻 ) [ 𝑘 ] ? 

0 1 0

𝑥1 = 0,𝑥2 = 0,𝑥3 = 0 ie
[ 0 ]

2
!

𝑥1 = 0,𝑥2 = 0,𝑥3 = 1 ie
[ 1 ]

2
!

𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 0 ie [ 2 ]
2
?𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 1 ie [ 3 ]

2
!

17.4



Positive Encoding not Optimal

𝑄 ( 𝑥1,…,𝑥𝑛 ) = ¬𝑁 ( 𝑥1,…,𝑥𝑛 ) , domain {0, 1}.

Positive encoding: preprocessing 𝑂 ( 2𝑛 )

N

𝑥1 𝑥2 𝑥3

1 0 1

𝑄 ( 𝔻 ) [ 1 ] ? 

𝑄 ( 𝔻 ) [ 2 ] ? 

𝑄 ( 𝔻 ) [ 3 ] ?

𝑄 ( 𝔻 ) [ 𝑘 ] ? 

0 1 0

𝑥1 = 0,𝑥2 = 0,𝑥3 = 0 ie
[ 0 ]

2
!

𝑥1 = 0,𝑥2 = 0,𝑥3 = 1 ie
[ 1 ]

2
!

𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 0 ie [ 2 ]
2
?𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 1 ie [ 3 ]

2
!

[𝑘 − 1 + 𝑝
𝑘
]
2

where 𝑝
𝑘
= {𝑡 ∈ 𝑁 ∣ 𝑡 ≤ 𝑘}

17.5



Positive Encoding not Optimal

𝑄 ( 𝑥1,…,𝑥𝑛 ) = ¬𝑁 ( 𝑥1,…,𝑥𝑛 ) , domain {0, 1}.

Positive encoding: preprocessing 𝑂 ( 2𝑛 )

N

𝑥1 𝑥2 𝑥3

1 0 1

𝑄 ( 𝔻 ) [ 1 ] ? 

𝑄 ( 𝔻 ) [ 2 ] ? 

𝑄 ( 𝔻 ) [ 3 ] ?

𝑄 ( 𝔻 ) [ 𝑘 ] ? 

0 1 0

𝑥1 = 0,𝑥2 = 0,𝑥3 = 0 ie
[ 0 ]

2
!

𝑥1 = 0,𝑥2 = 0,𝑥3 = 1 ie
[ 1 ]

2
!

𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 0 ie [ 2 ]
2
?𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 1 ie [ 3 ]

2
!

[𝑘 − 1 + 𝑝
𝑘
]
2

where 𝑝
𝑘
= {𝑡 ∈ 𝑁 ∣ 𝑡 ≤ 𝑘}

Linear preprocessing!

17.6



Hardness of subqueries

𝑄
1
= 𝑅 ( 1, 2, 3 ) ∧ 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 ) 𝑄

2
= 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )

18



Hardness of subqueries

𝑄
1
= 𝑅 ( 1, 2, 3 ) ∧ 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 ) 𝑄

2
= 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )

linear preprocessing

18.1



Hardness of subqueries

𝑄
1
= 𝑅 ( 1, 2, 3 ) ∧ 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 ) 𝑄

2
= 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )

linear preprocessing non-linear preprocessing

18.2



Hardness of subqueries

𝑄
1
= 𝑅 ( 1, 2, 3 ) ∧ 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 ) 𝑄

2
= 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )

linear preprocessing non-linear preprocessing

Subqueries may be harder to solve than the query itself!

18.3



Subqueries and negative atoms

𝑄
1
′ =  ¬𝑅 ( 1, 2, 3 )

∧ 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )
𝑄

2
= 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )

non-linear preprocessing (triangle)

19



Subqueries and negative atoms

𝑄
1
′ =  ¬𝑅 ( 1, 2, 3 )

∧ 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )
𝑄

2
= 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )

non-linear preprocessing (triangle)
Equivalent to 𝑄

2
 if 𝑅 = ∅

19.1



Subqueries and negative atoms

𝑄
1
′ =  ¬𝑅 ( 1, 2, 3 )

∧ 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )
𝑄

2
= 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )

non-linear preprocessing (triangle)
Equivalent to 𝑄

2
 if 𝑅 = ∅

DA for 𝑄 = 𝑃 ∧ 𝑁 implies DA for 𝑄 = 𝑃 ∧ 𝑁′ for every 𝑁′ ⊆ 𝑁!

19.2



Measuring hardness of SJQ

Good candidate for 𝑄 = 𝑄+ ∧ 𝑄−:

Signed-HyperOrder Width

𝑠𝑓ℎ𝑜𝑤 ( 𝑄,𝜋 ) = max𝑄′ ⊆ 𝑄− 𝜄 ( 𝑄+ ∧ 𝑄′,𝜋 )

For 𝑄 a (positive) JQ, and 𝜋 a variable ordering, we can solve DA with

Preprocessing ̃

𝑂( |𝔻|𝜄 ( 𝑄,𝜋 ) )
Access time 𝑂 ( log |𝔻| )

20



Measuring hardness of SJQ

Good candidate for 𝑄 = 𝑄+ ∧ 𝑄−:

Signed-HyperOrder Width

𝑠𝑓ℎ𝑜𝑤 ( 𝑄,𝜋 ) = max𝑄′ ⊆ 𝑄− 𝜄 ( 𝑄+ ∧ 𝑄′,𝜋 )

For 𝑄 a (positive) JQ, and 𝜋 a variable ordering, we can solve DA with

Preprocessing ̃

𝑂( |𝔻|𝜄 ( 𝑄,𝜋 ) )
Access time 𝑂 ( log |𝔻| )

signed JQ
̃

𝑂( |𝔻|𝑠𝑓ℎ𝑜𝑤 ( 𝑄, 𝜋 ) )

Our contribution : new island of tractability for Signed JQ!

20.1



A word on sfhow

Signed Fractional HyperOrder Width (and incidentally, our result) generalizes:

𝛽-acyclicity (#SAT and #NCQ are already known tractable)
signed-acyclicity (Model Checking for SCQ known to be tractable)
Nest set width (SAT / Model Checking for NCQ known to be tractable)
A non-fractional version show can be defined (better combined complexity)

Basically, everything that is known to be tractable on SCQ/NCQ.

1. Understanding model counting for β-acyclic CNF-formulas, J. Brault-Baron, F. C., S. Mengel
2. De la pertinence de l’énumération: complexité en logiques propositionnelle et du premier ordre, J. Brault-Baron
3. Tractability Beyond ß-Acyclicity for Conjunctive Queries with Negation, M. Lanzinger

21



Our algorithm: a circuit approach

22



Relational Circuits

𝑥1 𝑥2 𝑥3

0 0 1

0 1 0

0 1 1

1 0 1

1 0 2

1 1 1

1 1 2

1 2 0

1 2 1

2 0 1

2 0 2

2 2 1

0 0 0

2 2 2

23



Relational Circuits

𝑥1 𝑥2 𝑥3

0 0 1

0 1 0

0 1 1

1 0 1

1 0 2

1 1 1

1 1 2

1 2 0

1 2 1

2 0 1

2 0 2

2 2 1

0 0 0

2 2 2

23.1



Relational Circuits

𝑥1 𝑥2 𝑥3

0 0 1

0 1 0

0 1 1

1 0 1

1 0 2

1 1 1

1 1 2

1 2 0

1 2 1

2 0 1

2 0 2

2 2 1

0 0 0

2 2 2

23.2



Ordered Relational Circuits

Factorized representation of relation 𝑅 ⊆ 𝐷
𝑋:

Inputs gates : ⊤ & ⊥
Decision gates
Cartesian products: × -gates

24



Ordered Relational Circuits

Factorized representation of relation 𝑅 ⊆ 𝐷
𝑋:

Inputs gates : ⊤ & ⊥
Decision gates
Cartesian products: × -gates

Ordered: decision gates below 𝑥𝑖 only mention 𝑥𝑗 with 𝑗 > 𝑖.

24.1



Direct Access on Relational Circuits

For 𝐶 on domain 𝐷, variables 𝑥1,…,𝑥𝑛, DA
possible :

Preprocessing: 𝑂 ( |𝐶| log |𝐷| )

Access time: 𝑂 ( 𝑛 log |𝐷| )

25



Preprocessing

26



Preprocessing

Idea : for each gate 𝑣 over 𝑥𝑖 and for each domain value 𝑑

26.1



Preprocessing

Idea : for each gate 𝑣 over 𝑥𝑖 and for each domain value 𝑑

26.2



Preprocessing

Idea : for each gate 𝑣 over 𝑥𝑖 and for each domain value 𝑑

compute the size of the relation where 𝑥𝑖 is set to a value 𝑑′ ≤ 𝑑

26.3



Preprocessing

27



Preprocessing

27.1



Preprocessing

27.2



Preprocessing

27.3



Preprocessing

27.4



Preprocessing

27.5



Direct Access 7th solution

Compute the 7th solution 

28



Direct Access 7th solution

Compute the 7th solution 

28.1



Direct Access 7th solution

Compute the 7th solution 

28.2



Direct Access 7th solution

Compute the 7th solution →  111

28.3



Direct Access the 13th solution

Compute the 13th solution 

29



Direct Access the 13th solution

Compute the 13th solution 

29.1



Direct Access the 13th solution

Compute the 13th solution 

29.2



Direct Access the 13th solution

Compute the 13th solution 

29.3



Direct Access the 13th solution

Compute the 13th solution 

29.4



Direct Access the 13th solution

Compute the 13th solution →  221

29.5



Solving DA for SCQ

SCQ 𝑄 ( 𝑥1,…,𝑥𝑛 ) , 𝜋 = ( 𝑥1,…,𝑥𝑛 ) .

Preprocessing: 

1. Construct 𝜋-ordered circuit 𝐶 of size ̃𝑂( |𝔻|
𝑠𝑓ℎ𝑜𝑤 ( 𝑄,𝜋 )

𝑓 ( 𝑄 ) )
2. Preprocess 𝐶 in time 𝑂 ( |𝐶| log |𝔻| ) .

Direct Access : 

1. Directly on 𝐶
2. in time 𝑂 ( 𝑛 log |𝐷| )  !

30



Solving DA for SCQ

SCQ 𝑄 ( 𝑥1,…,𝑥𝑛 ) , 𝜋 = ( 𝑥1,…,𝑥𝑛 ) .

Preprocessing: 

1. Construct 𝜋-ordered circuit 𝐶 of size ̃𝑂( |𝔻|
𝑠𝑓ℎ𝑜𝑤 ( 𝑄,𝜋 )

𝑓 ( 𝑄 ) )
2. Preprocess 𝐶 in time 𝑂 ( |𝐶| log |𝔻| ) .

Direct Access : 

1. Directly on 𝐶
2. in time 𝑂 ( 𝑛 log |𝐷| )  !

𝑄, 𝑛 considered constant here!

The hidden constants 𝑓 ( 𝑄 )  are exponential in |𝑄| for bounded

𝑠𝑓ℎ𝑜𝑤 ( 𝑄 ) .

But polynomial in 𝑄 for bounded 𝑠ℎ𝑜𝑤 ( 𝑄 )  (non fractional question).

30.1



Solving DA for SCQ

SCQ 𝑄 ( 𝑥1,…,𝑥𝑛 ) , 𝜋 = ( 𝑥1,…,𝑥𝑛 ) .

Preprocessing: 

1. Construct 𝜋-ordered circuit 𝐶 of size ̃𝑂( |𝔻|
𝑠𝑓ℎ𝑜𝑤 ( 𝑄,𝜋 )

𝑓 ( 𝑄 ) )
2. Preprocess 𝐶 in time 𝑂 ( |𝐶| log |𝔻| ) .

Direct Access : 

1. Directly on 𝐶
2. in time 𝑂 ( 𝑛 log |𝐷| )  !

̃𝑂( |𝔻|
𝑠𝑓ℎ𝑜𝑤 ( 𝑄, 𝜋 ) )

𝑄, 𝑛 considered constant here!

The hidden constants 𝑓 ( 𝑄 )  are exponential in |𝑄| for bounded

𝑠𝑓ℎ𝑜𝑤 ( 𝑄 ) .

But polynomial in 𝑄 for bounded 𝑠ℎ𝑜𝑤 ( 𝑄 )  (non fractional question).

30.2



Solving DA for SCQ

SCQ 𝑄 ( 𝑥1,…,𝑥𝑛 ) , 𝜋 = ( 𝑥1,…,𝑥𝑛 ) .

Preprocessing: 

1. Construct 𝜋-ordered circuit 𝐶 of size ̃𝑂( |𝔻|
𝑠𝑓ℎ𝑜𝑤 ( 𝑄,𝜋 )

𝑓 ( 𝑄 ) )
2. Preprocess 𝐶 in time 𝑂 ( |𝐶| log |𝔻| ) .

Direct Access : 

1. Directly on 𝐶
2. in time 𝑂 ( 𝑛 log |𝐷| )  !

̃𝑂( |𝔻|
𝑠𝑓ℎ𝑜𝑤 ( 𝑄, 𝜋 ) )

𝑂 ( log |𝔻| )

𝑄, 𝑛 considered constant here!

The hidden constants 𝑓 ( 𝑄 )  are exponential in |𝑄| for bounded

𝑠𝑓ℎ𝑜𝑤 ( 𝑄 ) .

But polynomial in 𝑄 for bounded 𝑠ℎ𝑜𝑤 ( 𝑄 )  (non fractional question).

30.3



DPLL: building circuits

Compilation based on a variation of DPLL :

1. 𝑄 ( 𝔻 ) = ⨄
𝑑 ∈ 𝐷

[ 𝑥1 = 𝑑 ] × 𝑄 [ 𝑥1 = 𝑑 ] ( 𝔻 )

2. 𝑄 ( 𝔻 ) = 𝑄
1
( 𝔻 ) × 𝑄

2
( 𝔻 )  if 𝑄 = 𝑄

1
∧ 𝑄

2
 with 𝑣𝑎𝑟 ( 𝑄

1
) ∩ 𝑣𝑎𝑟 ( 𝑄

2
) = ∅

3. Top down induction + caching

https://florent.capelli.me/cytoscape/dpll.html

31

https://florent.capelli.me/cytoscape/dpll.html


A comment on the complexity of DPLL

If implemented this way, gives a |𝔻|𝑠𝑓ℎ𝑜𝑤 ( 𝑄 ) + 1 complexity…
Workaround: reencode the domain in binary and build a circuit iteratively testing the bits of each

variable.

32



Going further

33



Related results

1. Extension to ∃SJQ:
Last variable in 𝐶 can be existentially projected without increase in circuit size
Give DA for ∃𝑥𝑘,…,𝑥𝑛𝑄 ( 𝑥1,…,𝑥𝑛 ) .

2. Semi-ring Aggregation
𝑤:𝑋 × 𝐷 → ( 𝕂, ⊕ , ⊗ )

Compute ⨁
𝜏 ∈ 𝑄 ( 𝔻 )

⨂
𝑥 ∈ 𝑋

𝑤 ( 𝑥, 𝜏 ( 𝑥 ) )

3. Lowerbounds: cannot do better than |𝔻|
𝑠𝑓ℎ𝑜𝑤 ( 𝑄 )  preprocessing.

34



Work in progress

35



Work in progress

1. Aggregation
𝑄 ( 𝑥1, …, 𝑥𝑘, 𝐹 ( 𝑥𝑘 + 1, …, 𝑥𝑛 ) ) , generalizing work by I. Eldar, N. Carmeli, B. Kimelfeld.

35.1



Work in progress

1. Aggregation
𝑄 ( 𝑥1, …, 𝑥𝑘, 𝐹 ( 𝑥𝑘 + 1, …, 𝑥𝑛 ) ) , generalizing work by I. Eldar, N. Carmeli, B. Kimelfeld.

2. Understanding combined complexity for 𝑠𝑓ℎ𝑜𝑤 ( 𝑄 ) , the fractional version of 𝑠ℎ𝑜𝑤

35.2



Work in progress

1. Aggregation
𝑄 ( 𝑥1, …, 𝑥𝑘, 𝐹 ( 𝑥𝑘 + 1, …, 𝑥𝑛 ) ) , generalizing work by I. Eldar, N. Carmeli, B. Kimelfeld.

2. Understanding combined complexity for 𝑠𝑓ℎ𝑜𝑤 ( 𝑄 ) , the fractional version of 𝑠ℎ𝑜𝑤

3. Comparing 𝑠ℎ𝑜𝑤 and 𝛽-hypertree width (the most general parameter for which the complexity is still
unknown).

35.3




