Direct Access for Conjunctive Queries with Negations

Florent Capelli, Oliver Irwin CRIL, Université d'Artois Séminaire KRDB 23 Janvier 2025

Direct Access on Join Queries

Join Query: $Q(x_1, ..., x_n) = \bigwedge_{i=1}^k R_i(\mathbf{x_i})$ where $\mathbf{x_i}$ is a tuple over $X = \{x_1, ..., x_n\}$

Join Query: $Q(x_1, ..., x_n) = \bigwedge_{i=1}^k R_i(\mathbf{x_i})$ where \mathbf{x}_i is a tuple over $X = \{x_1, ..., x_n\}$ **Example**:

 $Q(city, country, name, id) = People(id, name, city) \land Capitals(city, country)$ People

id	name	city			
1	Alice	Paris		Capitals	
2	Bob	Lens	city	country	
-	Chiara	Rome	Berlin	Germany	
5			Paris	France	
4	Djibril	Berlin	Rome	Italy	
5	Émile	Dortmund			

Francesca Rome 6

Join Query: $Q(x_1, ..., x_n) = \bigwedge_{i=1}^k R_i(\mathbf{x_i})$ where \mathbf{x}_i is a tuple over $X = \{x_1, ..., x_n\}$ **Example**:

 $Q(city, country, name, id) = People(id, name, city) \land Capitals(city, country)$ People

id	name	city			
1	Alice	Paris		Capitals	
2	Bob	Lens	city	country	
3	Chiara	Rome	Berlin	Germany	
			Paris	France	
4	Djibril	Berlin	Rome	Italy	
5	Émile	Dortmund		j	

Francesca Rome 6

Join Query: $Q(x_1, ..., x_n) = \bigwedge_{i=1}^k R_i(\mathbf{x_i})$ where \mathbf{x}_i is a tuple over $X = \{x_1, ..., x_n\}$ **Example**:

 $Q(city, country, name, id) = People(id, name, city) \land Capitals(city, country)$ People

id	name	city			
1	Alice	Paris		Capitals	
2	Bob	Lens	city	country	
	Chiara		Berlin	Germany	
<u> </u>		Rome	Paris	France	
4	Djibril	Berlin	Rome	Italy	
5	Émile	Dortmund	Rome	Itury	

Francesca Rome 6

$Q(\mathbb{D})$

city	country	name	id
Paris	France	Alice	1
Rome	Italy	Chiara	3
Berlin	Germany	Djibril	4
Rome	Italy	Francesca	6

Direct Access

Quickly access $Q(\mathbb{D})[k]$, the k^{th} element of $Q(\mathbb{D})$. $Q \ (\ \mathbb{D} \)$

city	country	name	id
Paris	France	Alice	1
Rome	Italy	Chiara	3
Berlin	Germany	Djibril	4
Rome	Italy	Francesca	6

id

Direct Access

Quickly access $Q(\mathbb{D})[k]$, the k^{th} element of $Q(\mathbb{D})$. $Q\left(\ \mathbb{D} \
ight)$

city	country	name	id
Paris	France	Alice	1
Rome	Italy	Chiara	3
Berlin	Germany	Djibril	4
Rome	Italy	Francesca	6
	$Q \ (\ \mathbb{D} \)$	[2]?	

(Rome, Italy, Chiara, 3).

Naive Direct Access

Naive algorithm: materialize $Q(\mathbb{D})$ in an array, sort it. Access.

city	country	name	id
• • •		•••	•••
Berlin	Germany	Djibril	4
•••	•••	•••	•••
Paris	France	Alice	1
•••	•••	•••	•••
Rome	Italy	Chiara	3
Rome	Italy	Francesca	6
•••	•••	•••	•••

$Q(\mathbb{D})[1432] = ??$

Naive Direct Access

Naive algorithm: materialize $Q (\mathbb{D})$ in an array, sort it. Access.

city	country	name	id
•••	•••	•••	•••
Berlin	Germany	Djibril	4
•••	•••	•••	•••
Paris	France	Alice	1
•••	•••	•••	•••
Rome	Italy	Chiara	3
Rome	Italy	Francesca	6
•••	•••	•••	• • •

Precomputation : $O(\#Q(\mathbb{D}))$ at least (may be worse), very costly Access : O(1), nearly free

$Q(\mathbb{D}) [1432] = ??$

Naive Direct Access

Naive algorithm: materialize $Q (\mathbb{D})$ in an array, sort it. Access.

city	country	name	id
•••			•••
Berlin	Germany	Djibril	4
•••	•••	•••	•••
Paris	France	Alice	1
•••	•••	•••	•••
Rome	Italy	Chiara	3
Rome	Italy	Francesca	6
• • •	•••	•••	•••

Precomputation : $O(\#Q(\mathbb{D}))$ at least (may be worse), very costly Access : O(1), nearly free

$Q(\mathbb{D}) [1432] = ??$

Orders ?

- 1. Order by weights
- 2. Lexicographical orders
 - order on the vars of Q
 - order on domain D of $\mathbb D$

6

Orders ?

- 1. Order by weights
- 2. Lexicographical orders
 - order on the vars of Q
 - order on domain D of \mathbb{D}

Variable order (*city*, *country*, *name*, *id*):

city	country	name	id
Berlin	Germany	Djibril	4
Paris	France	Alice	1
Rome	Italy	Chiara	3
Rome	Italy	Francesca	6

Orders ?

Varia

- 1. Order by weights
- 2. Lexicographical orders
 - order on the vars of Q
 - order on domain D of $\mathbb D$

In this talk: only lexicographical

able order	(city,	country,	name, id):
------------	---------	----------	----------	----

	city	country	name	id	
	Berlin	Germany	Djibril	4	
	Paris	France	Alice	1	
	Rome	Italy	Chiara	3	
	Rome	Italy	Francesca	6	
0	orders.				

Applications

Direct Access generalizes many tasks that have been previously studied:

- Uniform sampling without repetitions
- Ranked enumeration
- Counting queries:
 - how many answers between τ_1 and τ_2 ?
 - how many answers extend a *partial answer* etc.

d au_2 ? *I answer* etc.

Beating the Naive Approach

Beating Naive Direct Access

Naive Direct Access:

- Preprocessing at least $O(\#Q(\mathbb{D}))$.
- Access time O(1).

Can we have better preprocessing and reasonable access time?

Beating Naive Direct Access

Naive Direct Access:

- Preprocessing at least $O(\#Q(\mathbb{D}))$.
- Access time O(1).

Can we have better preprocessing and reasonable access time?

"Ideal" complexity:

- $O(|\mathbb{D}|)$ preprocessing
- $O(\log |\mathbb{D}|)$ access time

Complexity of Direct Access

Computing $\#Q(\mathbb{D})$ given Q and \mathbb{D} is #P-hard.

No Direct Access algorithm with good guarantees for every Q and \mathbb{D} .

Complexity of Direct Access

Computing $\#Q (\mathbb{D})$ given Q and \mathbb{D} is #P-hard.

No Direct Access algorithm with good guarantees for every Q and \mathbb{D} .

Data complexity assumption: for a fixed Q, what is the best preprocessing $f(|\mathbb{D}|)$ for an access time $O(polylog|\mathbb{D}|)$?

> In this work, all presented complexity in data complexity will also be polynomial for combined complexity.

An easy query? $Q(a, b, c) = A(a, b) \land B(b, c).$ - c b

An easy query?

$$Q(a, b, c) = A(a, b) \land B($$

Direct Access for lexicographical order induc

- Precomputation $O(|\mathbb{D}|)$
- Access time $O(\log |\mathbb{D}|)$

(b,c) .

ced by
$$(a, b, c)$$
?

An easy query? $Q(a, b, c) = A(a, b) \land B(b, c).$ C

Direct Access for lexicographical order induc

- Precomputation $O(|\mathbb{D}|)$
- Access time $O(\log |\mathbb{D}|)$

		b	c
a	b	0	0
0	0	0	1
1	1	0	2
2	1	1	1
		1	2

Precomputation :

- $\#Q(0,0,_) = 3$
- $\#Q(1,1,_) = 2$
- $\#Q(2,1,_) = 2$

ced by
$$(a, b, c)$$
?

An easy query?

$$Q(a, b, c) = A(a, b) \land B($$

Direct Access for lexicographical order induc

- Precomputation $O(|\mathbb{D}|)$
- Access time $O(\log |\mathbb{D}|)$

			b	c
a	b		0	0
0	0	-	0	1
1	1	-	0	2
2	1		1	1
			1	2

Precomputation :

- $\#Q(0,0,_) = 3$
- $\#Q(1,1,_) = 2$
- $\#Q(2,1,_{-}) = 2$

b,c).

ced by
$$(a, b, c)$$
?

Access Q[5]:

• a = 0, b = 0: not enough solutions

• a = 1, b = 1: enough! 3 solutions smaller than (1, 1, ...)• Look for the second solution of $B(1, _): a = 1, b = 1, c = 2$

A not so easy quer $Q\left(a,c,b
ight) = A\left(a,b
ight) \wedge B\left(a,b
ight)$ C

Direct Access for lexicographical order induced by (a, c, b) **?** • **Precomputation** $O\left(\left|\mathbb{D}\right|^2\right)$ • Access time $O(\log |\mathbb{D}|)$

$$egin{array}{c} \mathbf{y} \\ b,c \) \ . \end{array}$$

A not so easy quer $Q(a,c,b) = A(a,b) \wedge B(a,b)$

Direct Access for lexicographical order indu • **Precomputation** $O\left(|\mathbb{D}|^2 \right)$

• Access time $O(\log |\mathbb{D}|)$

Reduces to multiplying two $\{0, 1\}$ -matrices M, N over \mathbb{N} :

- $(i, j) \in A$ iff M[i, j] = 1, $(j, k) \in N$ iff N[j, k] = 1
- #Q(i, j,]) = (MN)[i, j]
- Direct Access can be used to find #Q(i,j,) with $O(\log |\mathbb{D}|)$ queries.

$$egin{array}{c} \mathbf{y} \\ b,c \) \ . \end{array}$$

uced by
$$(a, c, b)$$
?

• **Tractable Direct access** for Q on \mathbb{D} :

Given a query Q and order π on its variables, we can c • **Tractable Direct access** for Q on \mathbb{D} : • **preprocessing** $\tilde{O}\left(\|\mathbb{D}\|^{\iota(Q,\pi)}\right)$

- **Tractable Direct access** for Q on \mathbb{D} :
 - **preprocessing** $\tilde{O}\left(\left|\mathbb{D}\right|^{\iota\left(Q,\pi\right)}\right)$
 - access $O(\log |\mathbb{D}|)$

- **Tractable Direct access** for Q on \mathbb{D} :
 - **preprocessing** $\tilde{O}\left(\left|\mathbb{D}\right|^{\iota\left(Q,\pi\right)}\right)$
 - access $O(\log |\mathbb{D}|)$
- Tight fine-grained lower bounds:

- **Tractable Direct access** for Q on \mathbb{D} :
 - preprocessing $\tilde{O}\left(\left|\mathbb{D}\right|^{\iota\left(Q,\pi\right)}\right)$
 - access $O(\log |\mathbb{D}|)$
- Tight fine-grained lower bounds:
 - if possible with $\tilde{O}\left(\left.\left|\mathbb{D}\right|^k\right)$ preprocessing with $k < \iota \left(\left.Q, \pi\right.\right)$

- **Tractable Direct access** for Q on \mathbb{D} :
 - preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(Q,\pi)} \right)$
 - access $O(\log |\mathbb{D}|)$
- Tight fine-grained lower bounds:
 - if possible with $\tilde{O}\left(\left.\left|\mathbb{D}\right|^k\right)$ preprocessing with $k < \iota \left(\left.Q, \pi\right.\right)$
 - then Zero-Clique Conjecture is false

(we can find 0-weighted k-cliques in graphs in time $< |G|^{k-\varepsilon}$)

- **Tractable Direct access** for Q on \mathbb{D} :
 - preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(Q,\pi)} \right)$
 - access $O(\log |\mathbb{D}|)$
- Tight fine-grained lower bounds:
 - if possible with $\tilde{O}(|\mathbb{D}|^k)$ preprocessing with $k < \iota(Q,\pi)$
 - then Zero-Clique Conjecture is false

(we can find 0-weighted k-cliques in graphs in time $< |G|^{k-\varepsilon}$)

• Function ι closely related to fractional hypertree width.

End of the story?

So, if we understand everything for Direct Access and lexicographical orders, what is **our** contribution?

Signed Join Queries

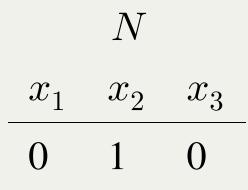
$$Q = \bigwedge_{i=1}^{k} P_i \left(\mathbf{z_i} \right) \bigwedge_{i=1}^{l} \neg N_i$$

Negation interpreted **over a given d**

V_i ($\mathbf{z_i}$) **Iomain** *D*:

$$Q = \bigwedge_{i=1}^{k} P_i \left(\mathbf{z_i} \right) \quad \bigwedge_{i=1}^{l} \neg N_i$$

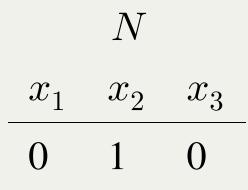
Negation interpreted **over a given d**



V_i ($\mathbf{z_i}$) lomain D:

$$Q = \bigwedge_{i=1}^{k} P_i \left(\mathbf{z_i} \right) \quad \bigwedge_{i=1}^{l} \neg N_i$$

Negation interpreted **over a given d**

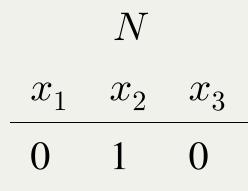


V_i ($\mathbf{z_i}$) lomain D:

$\neg N \text{ on } \{0,1\}$			
x_1	x_2	x_3	
0	0	0	
0	0	1	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$$Q = \bigwedge_{i=1}^{k} P_i \left(\mathbf{z_i} \right) \quad \bigwedge_{i=1}^{l} \neg N$$

Negation interpreted **over a given d**



- $\neg N(x_1, ..., x_k)$ encoded with $|D|^k \#N$ tuples.
- Relation with SAT: $\neg N$ is $x_1 \lor \neg x_2 \lor x_3$

$V_i (\mathbf{z_i})$ **lomain** D:

$\neg N$	$\neg N \text{ on } \{0,1\}$		
x_1	x_2	x_3	
0	0	0	
0	0	1	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Positive Encoding not C

 $Q\;(\;x_1,...,x_n\;)\;= \neg N\,(\;x_1,...,x_n\;)\;, \mathsf{d}$

Ν

1

1 0 1

 x_1

0

 $x_2 \quad x_3$

0

Positive encoding: preprocessing

- Q(
- Q (
- Q(
- Q (

Dptimal domain $\{0, 1\}$.		
$O\left(\ 2^n\ ight)$		
(D)[1]?		
(D)[2]?		
(D)[3]?		
(D)[k]?		

 $Q(x_1,...,x_n) = \neg N(x_1,...,x_n)$, domain $\{0,1\}$.

Positive encoding: preprocessing $O(2^n)$

- Q($\begin{bmatrix} 0 \end{bmatrix}$
- Q (

Ν $x_1 \quad x_2 \quad x_3$ 0 1 0 1 0 1

D) [1]?
$$x_1 = 0, x_2 = 0, x_3 = 0$$
 ie
²
D) [2]?

• $Q(\mathbb{D})[3]$?

• $Q(\mathbb{D})[k]$?

 $Q(x_1,...,x_n) = \neg N(x_1,...,x_n)$, domain $\{0,1\}$.

Positive encoding: preprocessing $O(2^n)$

- Q($\begin{bmatrix} 0 \end{bmatrix}$ • Q (
- [1]
- Q(

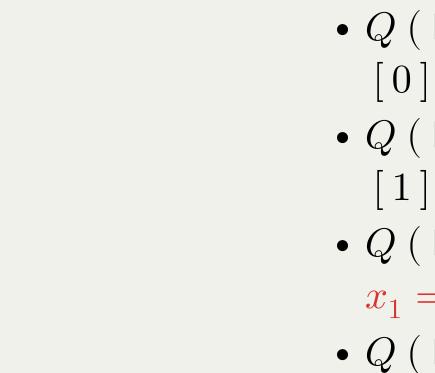
Ν $x_1 \quad x_2 \quad x_3$ 0 1 0 1 0 1

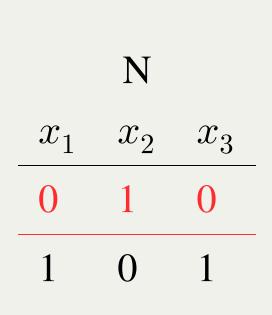
$$\begin{array}{c} \mathbb{D} \) \ [\ 1 \] \ ? \ x_1 = 0, x_2 = 0, x_3 = 0 \text{ ie} \\ \\ \begin{array}{c} 2 \\ \mathbb{D} \) \ [\ 2 \] \ ? \ x_1 = 0, x_2 = 0, x_3 = 1 \text{ ie} \\ \\ \\ \begin{array}{c} 2 \\ \mathbb{D} \) \ [\ 3 \] \ ? \end{array}$$

• $Q(\mathbb{D})[k]$?

 $Q(x_1,...,x_n) = \neg N(x_1,...,x_n)$, domain $\{0,1\}$.

Positive encoding: preprocessing $O(2^n)$

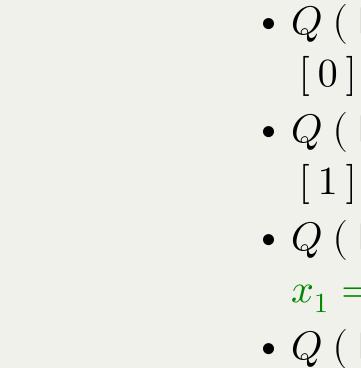


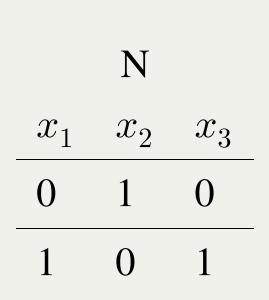


$$\begin{array}{l} \mathbb{D} \) \ [1] ? x_{1} = 0, x_{2} = 0, x_{3} = 0 \text{ ie} \\ \begin{array}{l} 2 \\ 2 \\ \mathbb{D} \) \ [2] ? x_{1} = 0, x_{2} = 0, x_{3} = 1 \text{ ie} \\ \begin{array}{l} 2 \\ 2 \\ \mathbb{D} \) \ [3] ? \\ = 0, x_{2} = 1, x_{3} = 0 \text{ ie} \ [2] \\ 2 \\ \mathbb{D} \) \ [k] ? \end{array}$$

 $Q(x_1,...,x_n) = \neg N(x_1,...,x_n)$, domain $\{0,1\}$.

Positive encoding: preprocessing $O(2^n)$





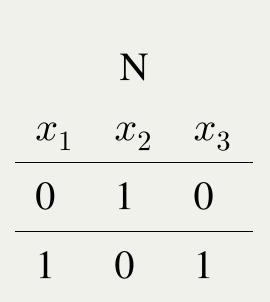
$$\begin{array}{l} \mathbb{D} \;) \; \left[\; 1 \; \right] \; ? \; x_1 = 0, x_2 = 0, x_3 = 0 \text{ ie} \\ \stackrel{2}{} \\ \mathbb{D} \;) \; \left[\; 2 \; \right] \; ? \; x_1 = 0, x_2 = 0, x_3 = 1 \text{ ie} \\ \stackrel{2}{} \\ \stackrel{2}{} \\ \mathbb{D} \;) \; \left[\; 3 \; \right] \; ? \\ = 0, x_2 = 1, x_3 = 1 \text{ ie} \; \left[\; 3 \; \right]_2 ! \\ \mathbb{D} \;) \; \left[\; k \; \right] \; ? \end{array}$$

 $Q(x_1,...,x_n) = \neg N(x_1,...,x_n)$, domain {0,1}.

Positive encoding: preprocessing $O(2^n)$

- Q ($\begin{bmatrix} 0 \end{bmatrix}$ • Q(
 - $\begin{bmatrix} 1 \end{bmatrix}$
- Q (
 - $x_1 =$
- Q (

when



$$\begin{array}{l} \mathbb{D} \;) \; \left[\; 1 \; \right] \; ? \; x_1 = 0, x_2 = 0, x_3 = 0 \text{ is } \\ \begin{array}{l} 2 \\ \mathbb{D} \;) \; \left[\; 2 \; \right] \; ? \; x_1 = 0, x_2 = 0, x_3 = 1 \text{ is } \\ \begin{array}{l} 2 \\ 2 \\ \mathbb{D} \;) \; \left[\; 3 \; \right] \; ? \\ = \; 0, x_2 = 1, x_3 = 1 \text{ is } \left[\; 3 \; \right] \; _2 ! \\ \mathbb{D} \;) \; \left[\; k \; \right] \; ? \; \left[\; k - 1 + p_k \right] \\ \begin{array}{l} 2 \\ 2 \\ \mathbb{D} \;) \; \left[\; k \; \right] \; ? \; \left[\; k - 1 + p_k \right] \\ 2 \\ \text{re } \; p_k = \; \{ t \in N \; | \; t \leq k \} \end{array}$$

 $Q(x_1,...,x_n) = \neg N(x_1,...,x_n)$, domain {0,1}.

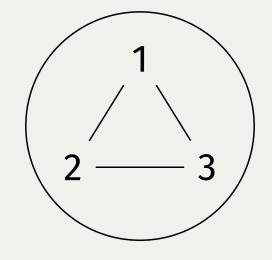
Positive encoding: preprocessing $O(2^n)$

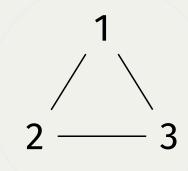
Linear preprocessing!

$$\begin{array}{l} \mathbb{D} \;) \; \left[\; 1 \; \right] \; \! ? \; x_1 = 0, x_2 = 0, x_3 = 0 \text{ is } \\ \stackrel{2}{} \\ \mathbb{D} \;) \; \left[\; 2 \; \right] \; \! ? \; x_1 = 0, x_2 = 0, x_3 = 1 \text{ is } \\ \stackrel{2}{} \\ \stackrel{2}{} \\ \stackrel{2}{} \\ \mathbb{D} \;) \; \left[\; 3 \; \right] \; \! ? \\ = \; 0, x_2 = 1, x_3 = 1 \text{ is } \left[\; 3 \; \right]_2 \! ! \\ \mathbb{D} \;) \; \left[\; k \; \right] \; \! ? \; \left[k - 1 + p_k \right]_2 \\ \mathbb{D} \;) \; \left[\; k \; \right] \; \! ? \; \left[k - 1 + p_k \right]_2 \\ \text{re } p_k = \{ t \in N \; | \; t \leq k \} \end{array}$$

Hardness of subqueries $(2,3) \land U(3,1) \qquad Q = S(1,2) \land T(2,3) \land U(3,1)$

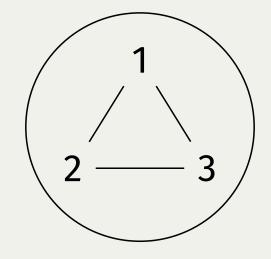
 $Q_1 = R \left(\; 1, 2, 3 \; \right) \; \wedge \; S \left(\; 1, 2 \; \right) \; \wedge \; T \left(\; 2, 3 \; \right) \; \wedge \; U \left(\; 3, 1 \; \right) \qquad \qquad Q_2 = S \left(\; 1, 2 \; \right) \; \wedge \; T \left(\; 2, 3 \; \right) \; \wedge \; U \left(\; 3, 1 \; \right)$



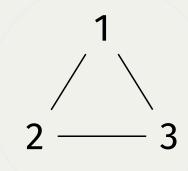


Hardness of subqueries $f(2,3) \land U(3,1) \qquad Q = S(1,2) \land T(2,3) \land U(3,1)$

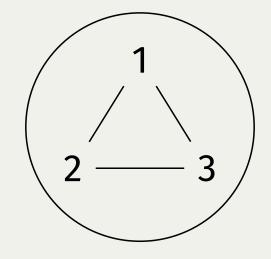
 $Q_1 = R \; (\; 1, 2, 3\;) \; \land S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_2 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_2 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_3 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_4 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_5 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_5 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_5 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_5 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_6 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_6 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_6 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_6 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_6 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_6 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_6 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_6 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_6 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_6 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_6 = S \; (\; 1, 2\;) \; \land T \; (\; 2, 3\;) \; \land U \; (\; 3, 1\;) \\ Q_6 = S \; (\; 1, 2\;) \; \land T \; (\; 3, 1\;) \; \land U \; (\; 3, 1\;) \\ Q_6 = S \; (\; 1, 2\;) \; \land T \; (\; 3, 1\;) \; \land U \; (\; 3, 1\;) \\ Q_6 = S \; (\; 1, 2\;) \; \land T \; (\; 3, 1\;) \; \land U \; (\; 3, 1\;) \; \: \: U \; (\; 3, 1\;) \; \: \: (\; 3, 1\;) \; \: \: U$



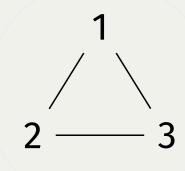
linear preprocessing



Hardness of subqueries

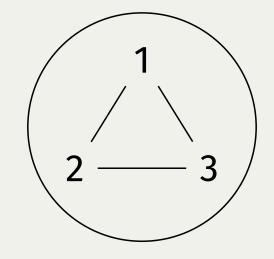


linear preprocessing



non-linear preprocessing

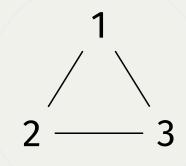
Hardness of subqueries



linear preprocessing

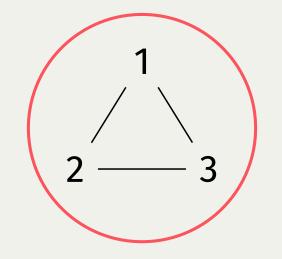
Subqueries may be harder to solve than the query itself!

non-linear preprocessing

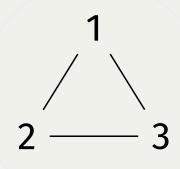


Subqueries and negative atoms

$$Q_{1}' = \neg R (1, 2, 3) \\ \wedge S (1, 2) \land T (2, 3) \land U (3, 1)$$



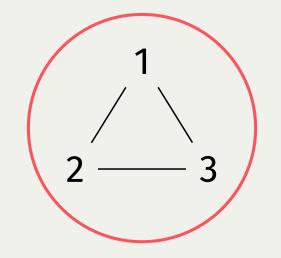
$Q_2 = S \; (\; 1,2\;) \; \wedge T \; (\; 2,3\;) \; \wedge U \; (\; 3,1\;)$



non-linear preprocessing (triangle)

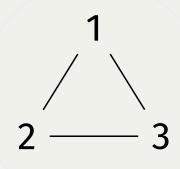
Subqueries and negative atoms

 $Q_{1}' = \neg R (1, 2, 3)$ $\land S (1, 2) \land T (2, 3) \land U (3, 1)$



Equivalent to Q_2 if $R = \emptyset$

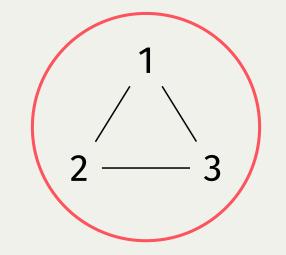
$Q_2 = S \; (\; 1,2\;) \; \wedge T \; (\; 2,3\;) \; \wedge U \; (\; 3,1\;)$



non-linear preprocessing (triangle)

Subqueries and negative atoms

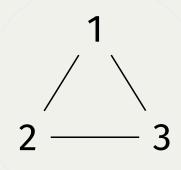
$$Q_{1}' = \neg R(1, 2, 3) \\ \wedge S(1, 2) \wedge T(2, 3) \wedge U(3, 1) \qquad Q_{2}$$



Equivalent to Q_2 if $R = \emptyset$

DA for $Q = P \land N$ implies **DA** for $Q = P \land N'$ for every $N' \subseteq N!$

$= S(1,2) \land T(2,3) \land U(3,1)$



non-linear preprocessing (triangle)

Measuring hardness of SJQ

Good candidate for $Q = Q^+ \wedge Q^-$:

Signed-HyperOrder Width sfhow $(Q, \pi) = \max_{Q' \subset Q^-} \iota (Q^+ \land Q', \pi)$

For Q a (positive) JQ, and π a variable ordering, we can solve DA with

- Preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(Q,\pi)} \right)$
- Access time $O(\log |\mathbb{D}|)$

Measuring hardness of SJQ

Good candidate for $Q = Q^+ \wedge Q^-$:

Signed-HyperOrder Width $sfhow(Q,\pi) = \max_{Q' \subseteq Q^-} \iota(Q^+ \land Q',\pi)$

For Q a signed JQ, and π a variable ordering, we can solve DA with

- Preprocessing $\tilde{O}\left(\left|\mathbb{D}\right|^{sfhow(Q,\pi)}\right)$
- Access time $O(\log |\mathbb{D}|)$

Our contribution : new island of tractability for Signed JQ!

we can solve DA with $(2, \pi)$

A word on show

Signed Fractional HyperOrder Width (and incidentally, our result) generalizes:

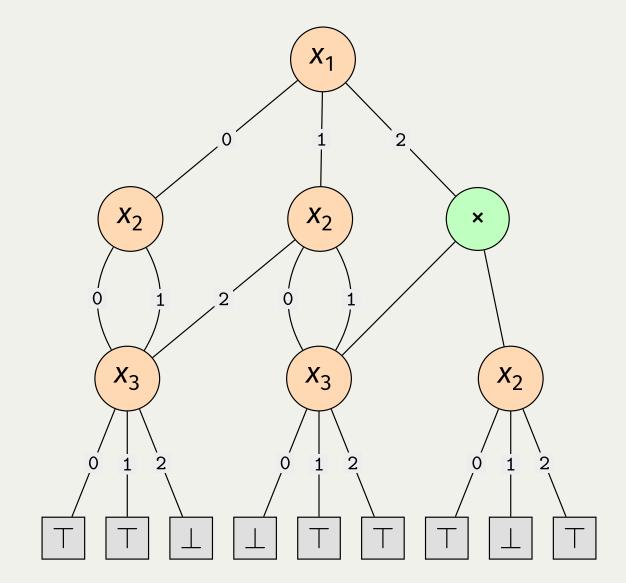
- β -acyclicity (#SAT and #NCQ are already known tractable)
- *signed*-acyclicity (Model Checking for SCQ known to be tractable)
- Nest set width (SAT / Model Checking for NCQ known to be tractable)
- A *non-fractional version* show can be defined (better combined complexity)

Basically, everything that is known to be tractable on SCQ/NCQ.

- 1. Understanding model counting for β -acyclic CNF-formulas, J. Brault-Baron, F. C., S. Mengel
- 2. De la pertinence de l'énumération: complexité en logiques propositionnelle et du premier ordre, J. Brault-Baron
- 3. Tractability Beyond β-Acyclicity for Conjunctive Queries with Negation, M. Lanzinger

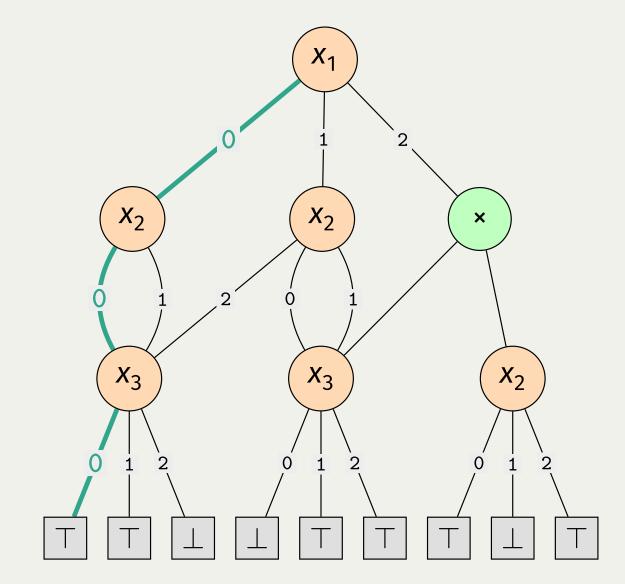
Our algorithm: a circuit approach

Relational Circuits



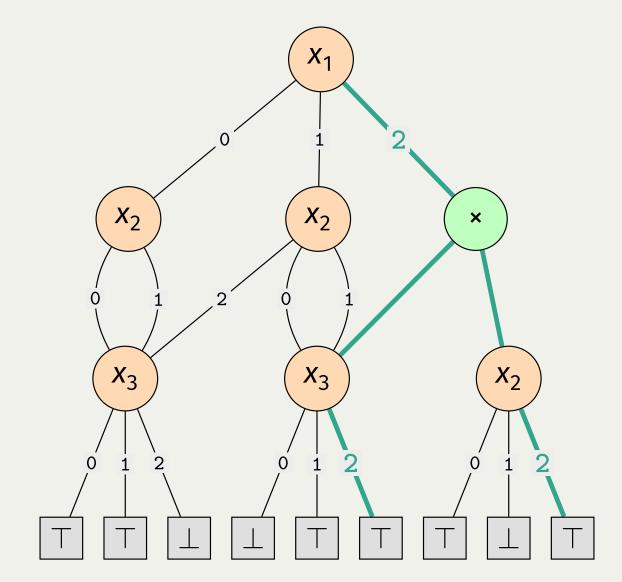
x_1	x_2	x_3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	1
1	0	2
1	1	1
1	1	2
1	2	0
1	2	1
2	0	1
2	0	2
2	2	1
2	2	2

Relational Circuits



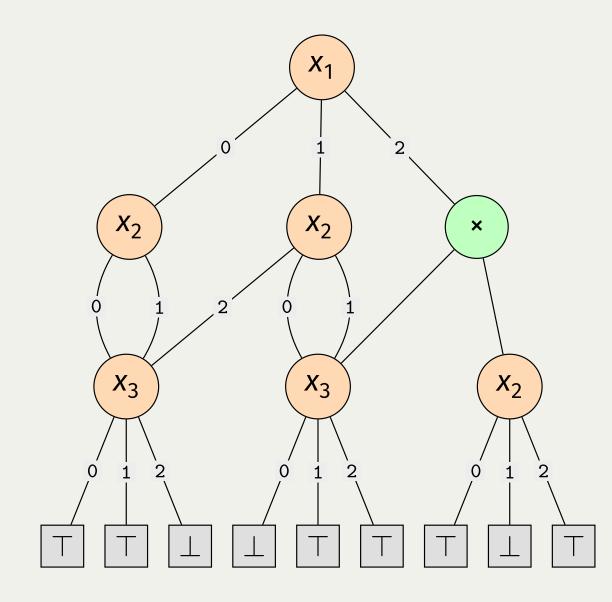
x_1	x_2	x_3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	1
1	0	2
1	1	1
1	1	2
1	2	0
1	2	1
2	0	1
2	0	2
2	2	1
2	2	2

Relational Circuits



x_1	x_2	x_3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	1
1	0	2
1	1	1
1	1	2
1	2	0
1	2	1
2	0	1
2	0	2
2	2	1
2	2	2

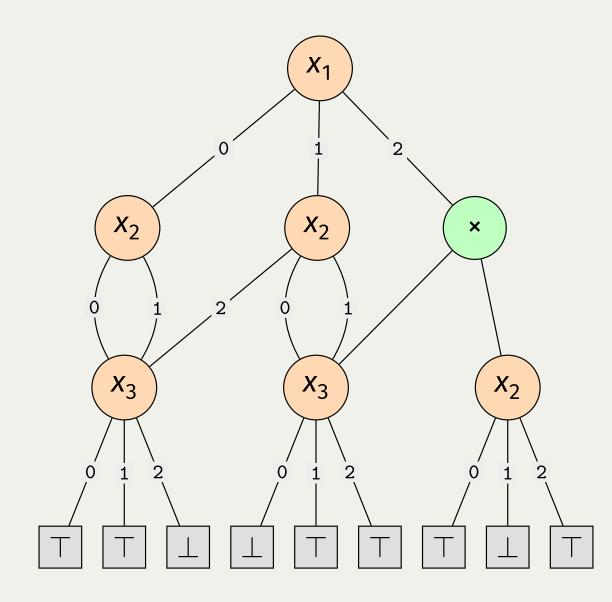
Ordered Relational Circuits



Factorized representation of relation $R \subseteq D^X$:

- Inputs gates : $\top \& \bot$
- **Decision** gates
- **Cartesian products**: × -gates

Ordered Relational Circuits

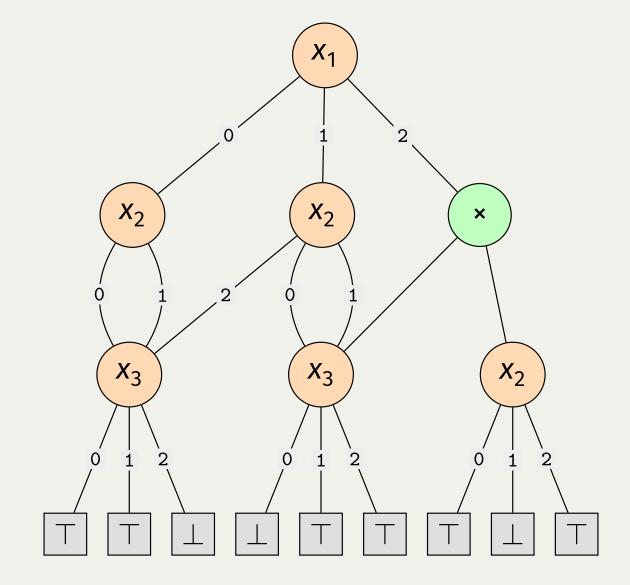


Ordered: decision gates below x_i only mention x_j with j > i.

Factorized representation of relation $R \subseteq D^X$:

- Inputs gates : $\top \& \bot$
- **Decision** gates
- **Cartesian products**: × -gates

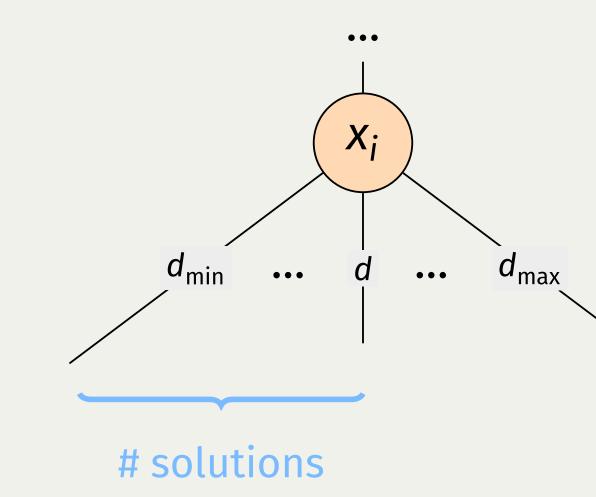
Direct Access on Relational Circuits



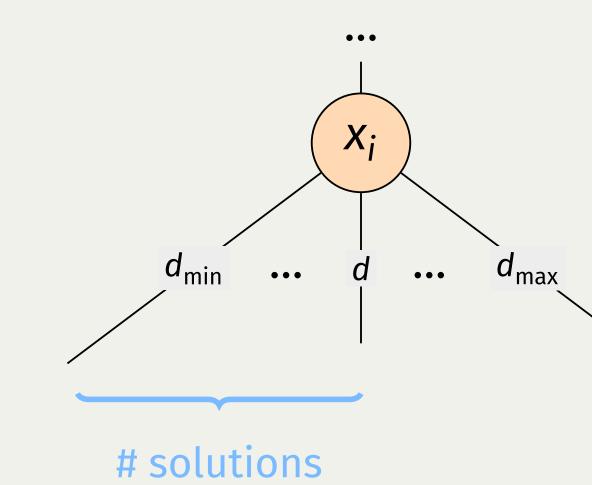
- For C on domain D, variables $x_1, ..., x_n$, DA possible :
 - **Preprocessing:** $O(|C| \log |D|)$
 - Access time: $O(n \log |D|)$

Idea : for each gate v over x_i and for each domain value d

Idea : for each gate v over x_i and for each domain value d

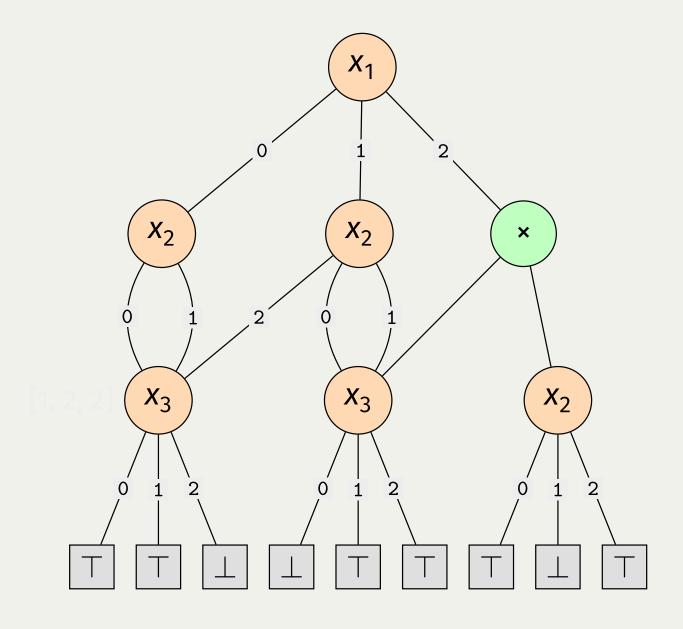


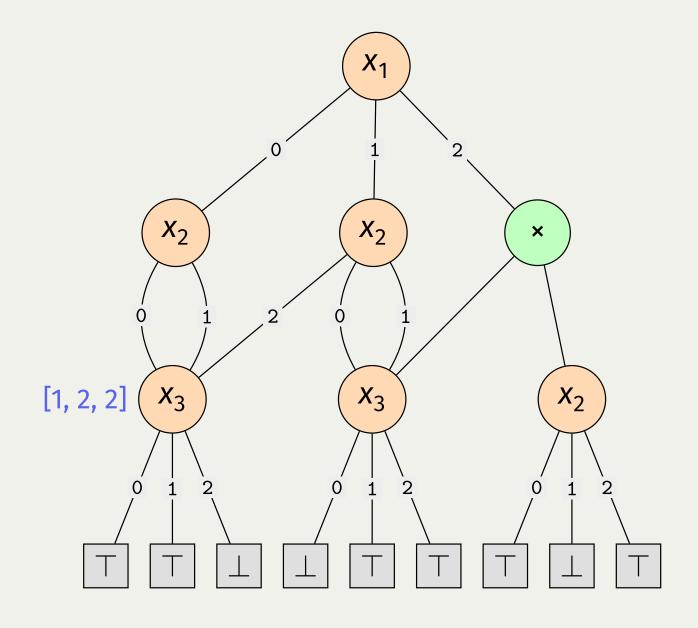
Idea : for each gate v over x_i and for each domain value d

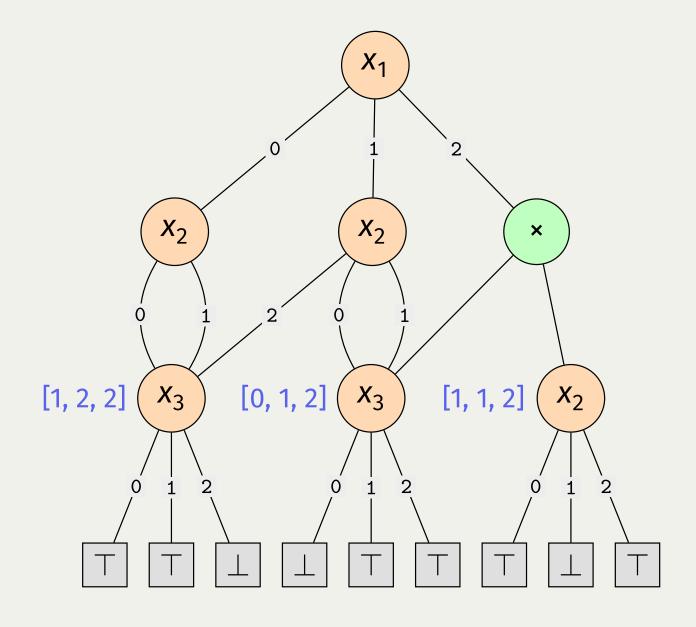


compute the size of the relation where x_i is set to a value $d' \leq d$

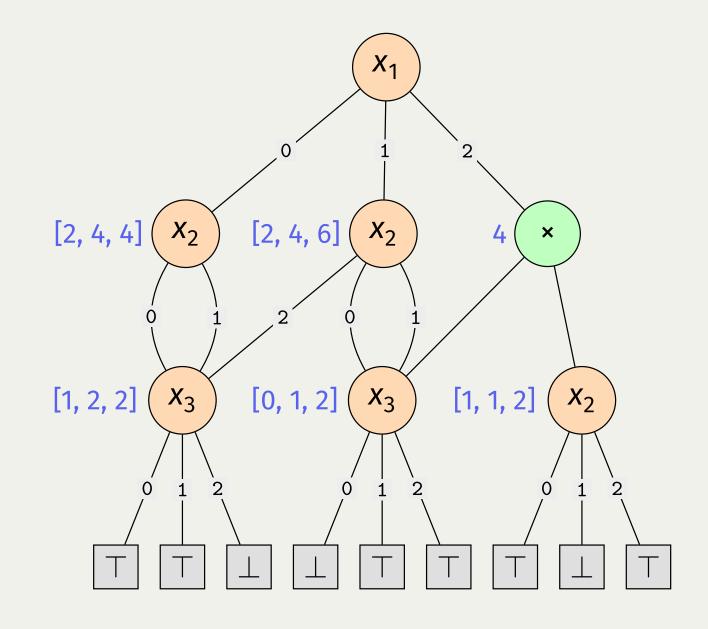
27



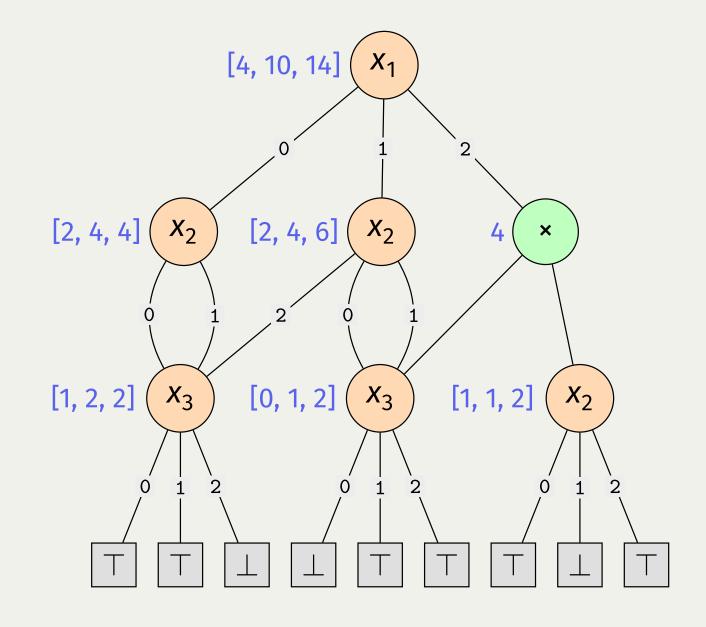


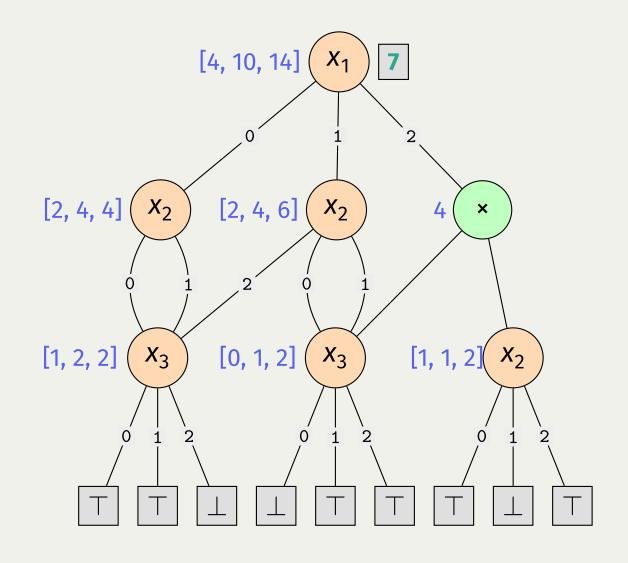


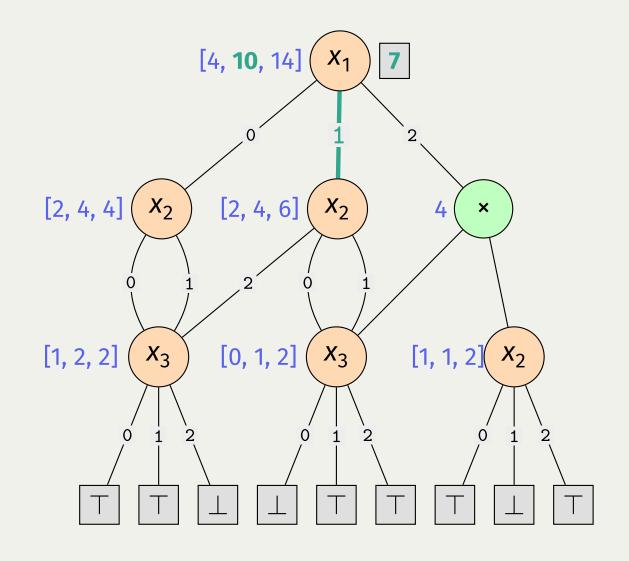
Preprocessing

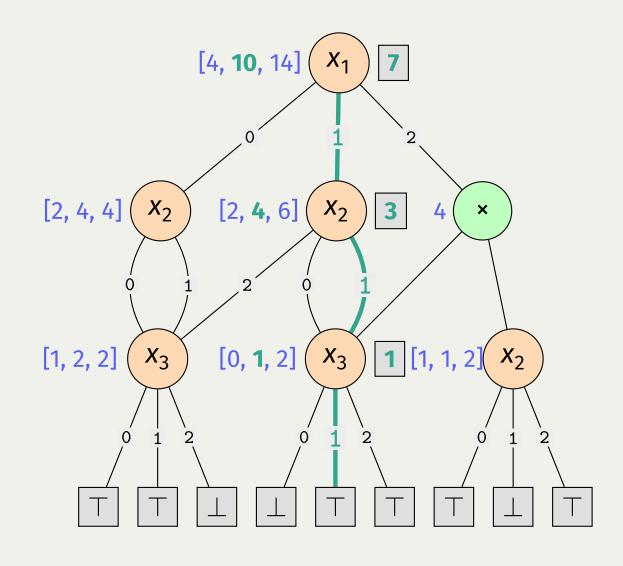


Preprocessing

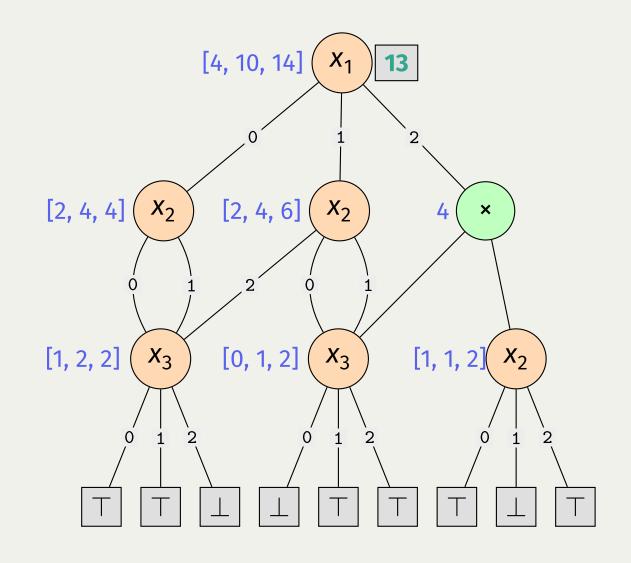


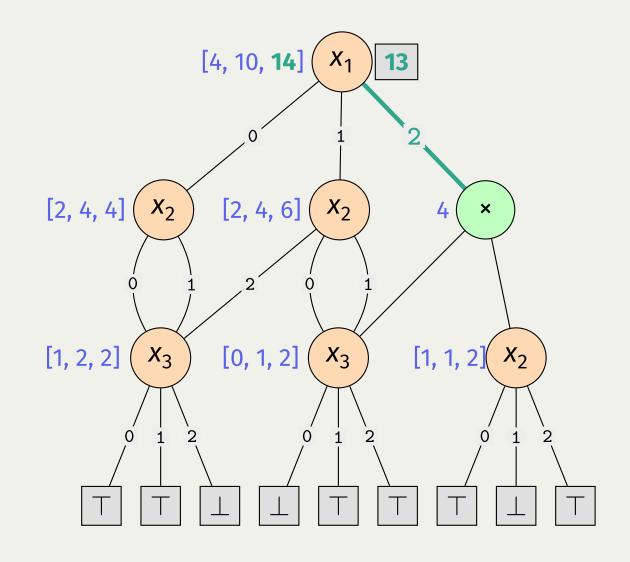


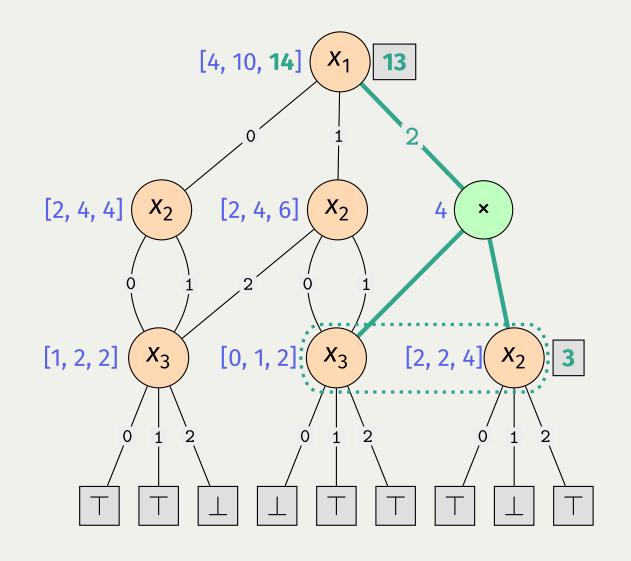


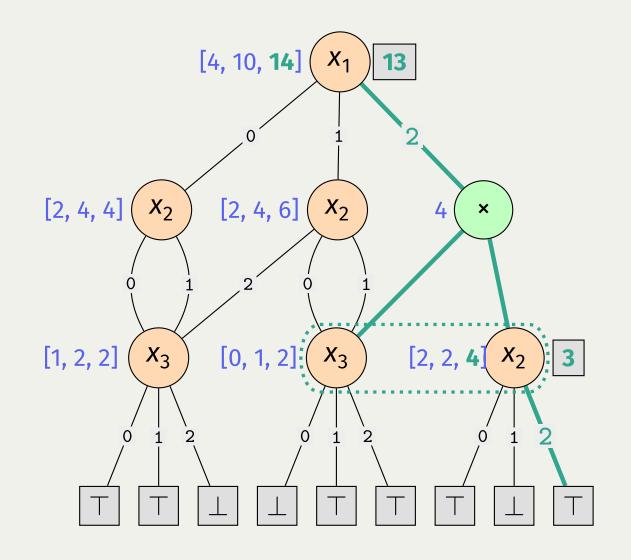


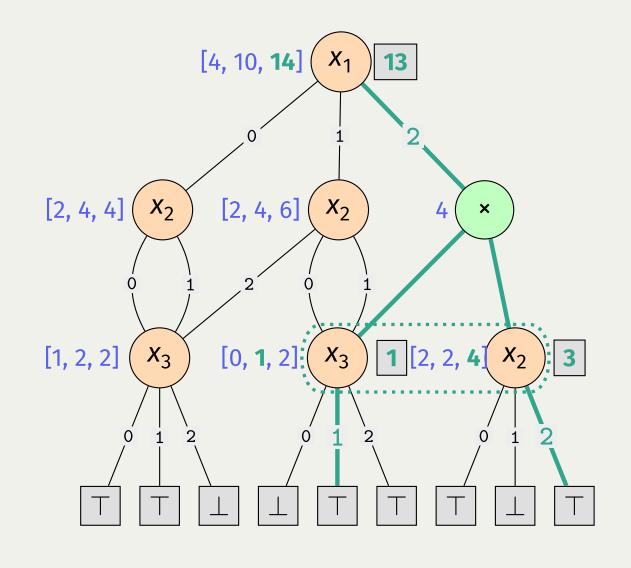
Compute the 7th solution $\rightarrow 111$











Compute the 13th solution $\rightarrow 221$

29.5

Solving DA for SCQ SCQ $Q(x_1, ..., x_n)$, $\pi = (x_1, ..., x_n)$. **Preprocessing**:

1. Construct π -ordered circuit C of size $\tilde{O}\left(\left|\mathbb{D}\right|^{sfhow(Q,\pi)}f(Q)\right)$ 2. Preprocess C in time O ($|C| \log |D|$). **Direct Access :** 1. Directly on C

2. in time $O(n \log |D|)$!

Solving DA for SCQ SCQ $Q(x_1, ..., x_n), \pi = (x_1, ..., x_n).$ **Preprocessing**:

1. Construct π -ordered circuit C of size $\tilde{O}\left(\left|\mathbb{D}\right|^{sfhow(Q,\pi)}f(Q)\right)$ 2. Preprocess C in time O ($|C| \log |D|$). **Direct Access :**

> 1. Directly on C2. in time $O(n \log |D|)$!

Q, n considered constant here!

- The hidden constants f(Q) are exponential in |Q| for bounded sfhow(Q).
- But polynomial in Q for bounded show (Q) (non fractional question).

Solving DA for SCQ SCQ $Q(x_1, ..., x_n)$, $\pi = (x_1, ..., x_n)$. **Preprocessing:** $\tilde{O}\left(\left|\mathbb{D}\right|^{sfhow(Q,\pi)}\right)$ 1. Construct π -ordered circuit C of size $\tilde{O}\left(\left| \mathbb{D} \right|^{sfhow(Q,\pi)} f(Q) \right)$ 2. Preprocess C in time O ($|C| \log |D|$). **Direct Access :** 1. Directly on C2. in time $O(n \log |D|)$!

Q, n considered constant here!

- The hidden constants f(Q) are exponential in |Q| for bounded sfhow(Q).
- But polynomial in Q for bounded show (Q) (non fractional question).

Solving DA for SCQ SCQ $Q(x_1, ..., x_n)$, $\pi = (x_1, ..., x_n)$. **Preprocessing:** $\tilde{O}\left(\left|\mathbb{D}\right|^{sfhow(Q,\pi)}\right)$ 1. Construct π -ordered circuit C of size $\tilde{O}\left(\left|\mathbb{D}\right|^{sfhow(Q,\pi)}f(Q)\right)$ 2. Preprocess C in time O ($|C| \log |D|$). **Direct Access** : $O(\log |\mathbb{D}|)$ 1. Directly on C2. in time $O(n \log |D|)$!

Q, n considered constant here!

- The hidden constants f(Q) are exponential in |Q| for bounded sfhow(Q).
- But polynomial in Q for bounded show (Q) (non fractional question).

DPLL: building circuits

Compilation based on a variation of DPLL :

1.
$$Q(\mathbb{D}) = \biguplus_{d \in D} [x_1 = d] \times Q[x_1 = d] (\mathbb{D})$$

2. $Q(\mathbb{D}) = Q(\mathbb{D}) \times Q[x_1 = d] (\mathbb{D})$

 $2. \ Q \ (\ \mathbb{D} \) \ = Q_1 \ (\ \mathbb{D} \) \ \times Q_2 \ (\ \mathbb{D} \) \ \text{ if } Q = Q_1 \land Q_2 \ \text{with } var \left(\ Q_1 \ \right) \ \cap var \left(\ Q_2 \ \right) \ = \emptyset$

3. Top down induction + caching

https://florent.capelli.me/cytoscape/dpll.html

A comment on the complexity of DPLL

- If implemented this way, gives a $|\mathbb{D}|^{sfhow(Q)+1}$ complexity...
- Workaround: reencode the domain in binary and build a circuit iteratively testing the bits of each variable.

Going further

Related results

- 1. Extension to \exists SJQ:
 - Last variable in C can be existentially projected without increase in circuit size
 - Give DA for $\exists x_k, ..., x_n Q (x_1, ..., x_n)$.
- 2. Semi-ring Aggregation
 - $w: X \times D \to (\mathbb{K}, \oplus, \otimes)$
 - Compute $\bigoplus_{\tau \in Q(\mathbb{D})} \bigotimes_{x \in X} w(x, \tau(x))$
- 3. Lowerbounds: cannot do better than $|\mathbb{D}|^{sfhow(Q)}$ preprocessing.

35

1. Aggregation $Q(x_1,...,x_k,F(x_{k+1},...,x_n))$, generalizing work by I. Eldar, N. Carmeli, B. Kimelfeld.

1. Aggregation $Q(x_1,...,x_k,F(x_{k+1},...,x_n))$, generalizing work by I. Eldar, N. Carmeli, B. Kimelfeld. 2. Understanding combined complexity for s fhow (Q), the fractional version of show

- 1. Aggregation
- $Q(x_1,...,x_k,F(x_{k+1},...,x_n))$, generalizing work by I. Eldar, N. Carmeli, B. Kimelfeld.
- 2. Understanding combined complexity for s fhow (Q), the fractional version of show
- 3. Comparing show and β -hypertree width (the most general parameter for which the complexity is still unknown).

