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Direct Access on Join Queries
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Join Queries

Join Query : 𝑄 ( 𝑥1,…,𝑥𝑛 ) = ⋀
𝑖 = 1

𝑘
𝑅𝑖 ( 𝐱𝐢 )

where 𝐱𝐢 is a tuple over 𝑋 = {𝑥1,…,𝑥𝑛}
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Join Queries

Join Query : 𝑄 ( 𝑥1,…,𝑥𝑛 ) = ⋀
𝑖 = 1

𝑘
𝑅𝑖 ( 𝐱𝐢 )

where 𝐱𝐢 is a tuple over 𝑋 = {𝑥1,…,𝑥𝑛}

Example:
𝑄 ( 𝑐𝑖𝑡𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑛𝑎𝑚𝑒, 𝑖𝑑 ) = 𝑃𝑒𝑜𝑝𝑙𝑒 ( 𝑖𝑑,𝑛𝑎𝑚𝑒, 𝑐𝑖𝑡𝑦 ) ∧ 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑠 ( 𝑐𝑖𝑡𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 )

People

id name city

1 Alice

2 Bob Lens

3 Chiara

4 Djibril

5 Émile Dortmund

6 Francesca

Capitals

city country

Germany

France

Italy

Paris

Rome

Berlin

Rome

Berlin

Paris

Rome
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Join Queries

Join Query : 𝑄 ( 𝑥1,…,𝑥𝑛 ) = ⋀
𝑖 = 1

𝑘
𝑅𝑖 ( 𝐱𝐢 )

where 𝐱𝐢 is a tuple over 𝑋 = {𝑥1,…,𝑥𝑛}

Example:
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People

id name city

1 Alice

2 Bob Lens

3 Chiara

4 Djibril

5 Émile Dortmund

6 Francesca

Capitals

city country

Germany

France

Italy

Paris

Rome

Berlin

Rome

Berlin

Paris

Rome

𝑄 ( 𝔻 )

city country name id

Paris France Alice 1

Rome Italy Chiara 3

Berlin Germany Djibril 4

Rome Italy Francesca 6
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Direct Access

Quickly access 𝑄 ( 𝔻 ) [ 𝑘 ] , the 𝑘𝑡ℎ element of 𝑄 ( 𝔻 ) .
𝑄 ( 𝔻 )

city country name id

Paris France Alice 1

Berlin Germany Djibril 4

Rome Italy Francesca 6

Rome Italy Chiara 3
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Direct Access

Quickly access 𝑄 ( 𝔻 ) [ 𝑘 ] , the 𝑘𝑡ℎ element of 𝑄 ( 𝔻 ) .
𝑄 ( 𝔻 )

city country name id

Paris France Alice 1

Berlin Germany Djibril 4

Rome Italy Francesca 6

Rome Italy Chiara 3

𝑄 ( 𝔻 ) [ 2 ] ?
( 𝑅𝑜𝑚𝑒, 𝐼𝑡𝑎𝑙𝑦,𝐶ℎ𝑖𝑎𝑟𝑎, 3 ) .
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Naive Direct Access

Naive algorithm: materialize 𝑄 ( 𝔻 )  in an array, . Access.
city country name id

… … … …

Berlin Germany Djibril 4

… … … …

Paris France Alice 1

… … … …

Rome Italy Chiara 3

Rome Italy Francesca 6

… … … …

𝑄 ( 𝔻 ) [ 1432 ] = ??

sort it
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Naive Direct Access

Naive algorithm: materialize 𝑄 ( 𝔻 )  in an array, . Access.
city country name id

… … … …

Berlin Germany Djibril 4

… … … …

Paris France Alice 1

… … … …

Rome Italy Chiara 3

Rome Italy Francesca 6

… … … …

𝑄 ( 𝔻 ) [ 1432 ] = ??

sort it

Precomputation : 𝑂 ( #𝑄 ( 𝔻 ) )  at least (may be worse), very costly

Access : 𝑂 ( 1 ) , nearly free
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Naive Direct Access

Naive algorithm: materialize 𝑄 ( 𝔻 )  in an array, . Access.
city country name id

… … … …

Berlin Germany Djibril 4

… … … …

Paris France Alice 1

… … … …

Rome Italy Chiara 3

Rome Italy Francesca 6

… … … …

𝑄 ( 𝔻 ) [ 1432 ] = ??

sort it

Precomputation : 𝑂 ( #𝑄 ( 𝔻 ) )  at least (may be worse), very costly

Access : 𝑂 ( 1 ) , nearly free

5.2



Orders ?

1. Order by weights

2. Lexicographical orders

order on the vars of 𝑄
order on domain 𝐷 of 𝔻
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Orders ?

1. Order by weights

2. Lexicographical orders

order on the vars of 𝑄
order on domain 𝐷 of 𝔻

Variable order ( 𝑐𝑖𝑡𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑛𝑎𝑚𝑒, 𝑖𝑑 ) :
city country name id

Berlin Germany Djibril 4

Paris France Alice 1

Rome Italy Chiara 3

Rome Italy Francesca 6
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Orders ?

1. Order by weights

2. Lexicographical orders

order on the vars of 𝑄
order on domain 𝐷 of 𝔻

Variable order ( 𝑐𝑖𝑡𝑦, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑛𝑎𝑚𝑒, 𝑖𝑑 ) :
city country name id

Berlin Germany Djibril 4

Paris France Alice 1

Rome Italy Chiara 3

Rome Italy Francesca 6

In this talk: only lexicographical orders.
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Applications

Direct Access generalizes many tasks that have been previously studied:
Uniform sampling without repetitions
Ranked enumeration

Counting queries:
how many answers between 𝜏1 and 𝜏2?
how many answers extend a partial answer etc.
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Beating the Naive Approach

8



Beating Naive Direct Access

Naive Direct Access:
Preprocessing at least 𝑂 ( #𝑄 ( 𝔻 ) ) .
Access time 𝑂 ( 1 ) .

Can we have better preprocessing and reasonable access time?
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Beating Naive Direct Access

Naive Direct Access:
Preprocessing at least 𝑂 ( #𝑄 ( 𝔻 ) ) .
Access time 𝑂 ( 1 ) .

Can we have better preprocessing and reasonable access time?

“Ideal” complexity:
𝑂 ( |𝔻| )  preprocessing
𝑂 ( log |𝔻| )  access time
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Complexity of Direct Access

Computing #𝑄 ( 𝔻 )  given 𝑄 and 𝔻 is #𝑃-hard.

No Direct Access algorithm with good guarantees for every 𝑄 and 𝔻.
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Complexity of Direct Access

Computing #𝑄 ( 𝔻 )  given 𝑄 and 𝔻 is #𝑃-hard.

No Direct Access algorithm with good guarantees for every 𝑄 and 𝔻.

Data complexity assumption: for a fixed 𝑄, what is the best preprocessing 𝑓 ( |𝔻| )  for an
access time 𝑂 ( 𝑝𝑜𝑙𝑦𝑙𝑜𝑔|𝔻| ) ?

In this work, all presented complexity in data complexity will also be polynomial for
combined complexity.
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An easy query?
𝑄 ( 𝑎, 𝑏, 𝑐 ) = 𝐴 ( 𝑎, 𝑏 ) ∧ 𝐵 ( 𝑏, 𝑐 ) .

a b c
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𝑄 ( 𝑎, 𝑏, 𝑐 ) = 𝐴 ( 𝑎, 𝑏 ) ∧ 𝐵 ( 𝑏, 𝑐 ) .

a b c

Direct Access for lexicographical order induced by ( 𝑎, 𝑏, 𝑐 ) ?

Precomputation 𝑂 ( |𝔻| )

Access time 𝑂 ( log |𝔻| )
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An easy query?
𝑄 ( 𝑎, 𝑏, 𝑐 ) = 𝐴 ( 𝑎, 𝑏 ) ∧ 𝐵 ( 𝑏, 𝑐 ) .

a b c

Direct Access for lexicographical order induced by ( 𝑎, 𝑏, 𝑐 ) ?

Precomputation 𝑂 ( |𝔻| )

Access time 𝑂 ( log |𝔻| )

a b

0 0

1 1

2 1

b c

0 0

0 1

0 2

1 1

1 2

Precomputation :
#𝑄 ( 0, 0, _ ) = 3

#𝑄 ( 1, 1, _ ) = 2

#𝑄 ( 2, 1, _ ) = 2
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An easy query?
𝑄 ( 𝑎, 𝑏, 𝑐 ) = 𝐴 ( 𝑎, 𝑏 ) ∧ 𝐵 ( 𝑏, 𝑐 ) .

a b c

Direct Access for lexicographical order induced by ( 𝑎, 𝑏, 𝑐 ) ?

Precomputation 𝑂 ( |𝔻| )

Access time 𝑂 ( log |𝔻| )

a b

0 0

1 1

2 1

b c

0 0

0 1

0 2

1 1

1 2

Precomputation :
#𝑄 ( 0, 0, _ ) = 3

#𝑄 ( 1, 1, _ ) = 2

#𝑄 ( 2, 1, _ ) = 2

Access 𝑄 [ 5 ] :
𝑎 = 0, 𝑏 = 0: not enough solutions
𝑎 = 1, 𝑏 = 1: enough! 3 solutions smaller than ( 1, 1, _ )
Look for the second solution of 𝐵 ( 1, _ ) : 𝑎 = 1, 𝑏 = 1, 𝑐 = 2
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A not so easy query
𝑄 ( 𝑎, 𝑐, 𝑏 ) = 𝐴 ( 𝑎, 𝑏 ) ∧ 𝐵 ( 𝑏, 𝑐 ) .

a b c

Direct Access for lexicographical order induced by ( 𝑎, 𝑐, 𝑏 ) ?

Precomputation 𝑂 ( |𝔻|2 )
Access time 𝑂 ( log |𝔻| )
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A not so easy query
𝑄 ( 𝑎, 𝑐, 𝑏 ) = 𝐴 ( 𝑎, 𝑏 ) ∧ 𝐵 ( 𝑏, 𝑐 ) .

a b c

Direct Access for lexicographical order induced by ( 𝑎, 𝑐, 𝑏 ) ?

Precomputation 𝑂 ( |𝔻|2 )
Access time 𝑂 ( log |𝔻| )

Reduces to multiplying two {0, 1}-matrices 𝑀,𝑁 over ℕ:
( 𝑖, 𝑗 ) ∈ 𝐴 iff 𝑀 [ 𝑖, 𝑗 ] = 1, ( 𝑗, 𝑘 ) ∈ 𝑁 iff 𝑁 [ 𝑗, 𝑘 ] = 1

#𝑄 ( 𝑖, 𝑗, _ ) = ( 𝑀𝑁 ) [ 𝑖, 𝑗 ]

Direct Access can be used to find #𝑄 ( 𝑖, 𝑗, _ )  with 𝑂 ( log |𝔻| )  queries.
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Characterizing preprocessing time

Given a query 𝑄 and order 𝜋 on its variables, we can compute 𝜄 ( 𝑄,𝜋 )  such that:

1. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries, N. Carmeli, N. Tziavelis, W. Gatterbauer, B. Kimelfeld, M. Riedewald
2. Tight Fine-Grained Bounds for Direct Access on Join Queries, K. Bringmann, N. Carmeli, S. Mengel
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Characterizing preprocessing time

Given a query 𝑄 and order 𝜋 on its variables, we can compute 𝜄 ( 𝑄,𝜋 )  such that:

1. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries, N. Carmeli, N. Tziavelis, W. Gatterbauer, B. Kimelfeld, M. Riedewald
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Tractable Direct access for 𝑄 on 𝔻:

preprocessing ̃

𝑂( |𝔻|𝜄 ( 𝑄,𝜋 ) )
access 𝑂 ( log |𝔻| )

Tight fine-grained lower bounds:
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Characterizing preprocessing time

Given a query 𝑄 and order 𝜋 on its variables, we can compute 𝜄 ( 𝑄,𝜋 )  such that:
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preprocessing ̃

𝑂( |𝔻|𝜄 ( 𝑄,𝜋 ) )
access 𝑂 ( log |𝔻| )

Tight fine-grained lower bounds:
if possible with ̃

𝑂 ( |𝔻|
𝑘 )  preprocessing with 𝑘 < 𝜄 ( 𝑄,𝜋 )
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Characterizing preprocessing time

Given a query 𝑄 and order 𝜋 on its variables, we can compute 𝜄 ( 𝑄,𝜋 )  such that:
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𝑂( |𝔻|𝜄 ( 𝑄,𝜋 ) )
access 𝑂 ( log |𝔻| )

Tight fine-grained lower bounds:
if possible with ̃

𝑂 ( |𝔻|
𝑘 )  preprocessing with 𝑘 < 𝜄 ( 𝑄,𝜋 )

then Zero-Clique Conjecture is false
(we can find 0-weighted 𝑘-cliques in graphs in time < |𝐺|𝑘 − 𝜀)
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Characterizing preprocessing time

Given a query 𝑄 and order 𝜋 on its variables, we can compute 𝜄 ( 𝑄,𝜋 )  such that:

1. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries, N. Carmeli, N. Tziavelis, W. Gatterbauer, B. Kimelfeld, M. Riedewald
2. Tight Fine-Grained Bounds for Direct Access on Join Queries, K. Bringmann, N. Carmeli, S. Mengel

Tractable Direct access for 𝑄 on 𝔻:

preprocessing ̃

𝑂( |𝔻|𝜄 ( 𝑄,𝜋 ) )
access 𝑂 ( log |𝔻| )

Tight fine-grained lower bounds:
if possible with ̃

𝑂 ( |𝔻|
𝑘 )  preprocessing with 𝑘 < 𝜄 ( 𝑄,𝜋 )

then Zero-Clique Conjecture is false
(we can find 0-weighted 𝑘-cliques in graphs in time < |𝐺|𝑘 − 𝜀)

Function 𝜄 closely related to fractional hypertree width.
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End of the story?

So, if we understand everything for Direct Access and lexicographical orders, what is our

contribution?
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Signed Join Queries
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Definition

𝑄 = ⋀
𝑖 = 1

𝑘
𝑃𝑖 ( 𝐳𝐢 )  ⋀

𝑖 = 1

𝑙
¬𝑁𝑖 ( 𝐳𝐢 )

Negation interpreted over a given domain 𝐷:
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Definition

𝑄 = ⋀
𝑖 = 1

𝑘
𝑃𝑖 ( 𝐳𝐢 )  ⋀

𝑖 = 1

𝑙
¬𝑁𝑖 ( 𝐳𝐢 )

Negation interpreted over a given domain 𝐷:

𝑁

𝑥1 𝑥2 𝑥3

0 1 0

16.1



Definition

𝑄 = ⋀
𝑖 = 1

𝑘
𝑃𝑖 ( 𝐳𝐢 )  ⋀

𝑖 = 1

𝑙
¬𝑁𝑖 ( 𝐳𝐢 )

Negation interpreted over a given domain 𝐷:

𝑁

𝑥1 𝑥2 𝑥3

0 1 0

¬𝑁 on {0, 1}

𝑥1 𝑥2 𝑥3

0 0 0

0 0 1

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
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Definition

𝑄 = ⋀
𝑖 = 1

𝑘
𝑃𝑖 ( 𝐳𝐢 )  ⋀

𝑖 = 1

𝑙
¬𝑁𝑖 ( 𝐳𝐢 )

Negation interpreted over a given domain 𝐷:

𝑁

𝑥1 𝑥2 𝑥3

0 1 0

¬𝑁 on {0, 1}

𝑥1 𝑥2 𝑥3

0 0 0

0 0 1

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

¬𝑁 ( 𝑥1,…,𝑥𝑘 )  encoded with |𝐷|𝑘 − #𝑁 tuples.
Relation with SAT: ¬𝑁 is 𝑥1 ∨ ¬𝑥2 ∨ 𝑥3

16.3



Positive Encoding not Optimal

𝑄 ( 𝑥1,…,𝑥𝑛 ) = ¬𝑁 ( 𝑥1,…,𝑥𝑛 ) , domain {0, 1}.

Positive encoding: preprocessing 𝑂 ( 2𝑛 )

N

𝑥1 𝑥2 𝑥3

1 0 1

𝑄 ( 𝔻 ) [ 1 ] ? 

𝑄 ( 𝔻 ) [ 2 ] ? 

𝑄 ( 𝔻 ) [ 3 ] ?

𝑄 ( 𝔻 ) [ 𝑘 ] ? 

0 1 0
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Positive Encoding not Optimal

𝑄 ( 𝑥1,…,𝑥𝑛 ) = ¬𝑁 ( 𝑥1,…,𝑥𝑛 ) , domain {0, 1}.

Positive encoding: preprocessing 𝑂 ( 2𝑛 )

N

𝑥1 𝑥2 𝑥3

1 0 1

𝑄 ( 𝔻 ) [ 1 ] ? 

𝑄 ( 𝔻 ) [ 2 ] ? 

𝑄 ( 𝔻 ) [ 3 ] ?

𝑄 ( 𝔻 ) [ 𝑘 ] ? 

0 1 0

𝑥1 = 0,𝑥2 = 0,𝑥3 = 0 ie
[ 0 ]

2
!
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Positive Encoding not Optimal

𝑄 ( 𝑥1,…,𝑥𝑛 ) = ¬𝑁 ( 𝑥1,…,𝑥𝑛 ) , domain {0, 1}.

Positive encoding: preprocessing 𝑂 ( 2𝑛 )

N

𝑥1 𝑥2 𝑥3

1 0 1

𝑄 ( 𝔻 ) [ 1 ] ? 

𝑄 ( 𝔻 ) [ 2 ] ? 

𝑄 ( 𝔻 ) [ 3 ] ?

𝑄 ( 𝔻 ) [ 𝑘 ] ? 

0 1 0

𝑥1 = 0,𝑥2 = 0,𝑥3 = 0 ie
[ 0 ]

2
!

𝑥1 = 0,𝑥2 = 0,𝑥3 = 1 ie
[ 1 ]

2
!
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Positive Encoding not Optimal

𝑄 ( 𝑥1,…,𝑥𝑛 ) = ¬𝑁 ( 𝑥1,…,𝑥𝑛 ) , domain {0, 1}.

Positive encoding: preprocessing 𝑂 ( 2𝑛 )

N

𝑥1 𝑥2 𝑥3

1 0 1

𝑄 ( 𝔻 ) [ 1 ] ? 

𝑄 ( 𝔻 ) [ 2 ] ? 

𝑄 ( 𝔻 ) [ 3 ] ?

𝑄 ( 𝔻 ) [ 𝑘 ] ? 

0 1 0

𝑥1 = 0,𝑥2 = 0,𝑥3 = 0 ie
[ 0 ]

2
!

𝑥1 = 0,𝑥2 = 0,𝑥3 = 1 ie
[ 1 ]

2
!

𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 0 ie [ 2 ]
2
?
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𝑥1 = 0,𝑥2 = 0,𝑥3 = 1 ie
[ 1 ]

2
!

𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 0 ie [ 2 ]
2
?𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 1 ie [ 3 ]

2
!
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𝑄 ( 𝔻 ) [ 1 ] ? 

𝑄 ( 𝔻 ) [ 2 ] ? 

𝑄 ( 𝔻 ) [ 3 ] ?

𝑄 ( 𝔻 ) [ 𝑘 ] ? 

0 1 0

𝑥1 = 0,𝑥2 = 0,𝑥3 = 0 ie
[ 0 ]

2
!

𝑥1 = 0,𝑥2 = 0,𝑥3 = 1 ie
[ 1 ]

2
!

𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 0 ie [ 2 ]
2
?𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 1 ie [ 3 ]

2
!

[𝑘 − 1 + 𝑝
𝑘
]
2

where 𝑝
𝑘
= {𝑡 ∈ 𝑁 ∣ 𝑡 ≤ 𝑘}
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Positive Encoding not Optimal

𝑄 ( 𝑥1,…,𝑥𝑛 ) = ¬𝑁 ( 𝑥1,…,𝑥𝑛 ) , domain {0, 1}.

Positive encoding: preprocessing 𝑂 ( 2𝑛 )

N

𝑥1 𝑥2 𝑥3

1 0 1

𝑄 ( 𝔻 ) [ 1 ] ? 

𝑄 ( 𝔻 ) [ 2 ] ? 

𝑄 ( 𝔻 ) [ 3 ] ?

𝑄 ( 𝔻 ) [ 𝑘 ] ? 

0 1 0

𝑥1 = 0,𝑥2 = 0,𝑥3 = 0 ie
[ 0 ]

2
!

𝑥1 = 0,𝑥2 = 0,𝑥3 = 1 ie
[ 1 ]

2
!

𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 0 ie [ 2 ]
2
?𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 1 ie [ 3 ]

2
!

[𝑘 − 1 + 𝑝
𝑘
]
2

where 𝑝
𝑘
= {𝑡 ∈ 𝑁 ∣ 𝑡 ≤ 𝑘}

Linear preprocessing!
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Hardness of subqueries

𝑄
1
= 𝑅 ( 1, 2, 3 ) ∧ 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 ) 𝑄

2
= 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )
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Hardness of subqueries

𝑄
1
= 𝑅 ( 1, 2, 3 ) ∧ 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 ) 𝑄

2
= 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )

linear preprocessing
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Hardness of subqueries

𝑄
1
= 𝑅 ( 1, 2, 3 ) ∧ 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 ) 𝑄

2
= 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )

linear preprocessing non-linear preprocessing

18.2



Hardness of subqueries

𝑄
1
= 𝑅 ( 1, 2, 3 ) ∧ 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 ) 𝑄

2
= 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )

linear preprocessing non-linear preprocessing

Subqueries may be harder to solve than the query itself!
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Subqueries and negative atoms

𝑄
1
′ =  ¬𝑅 ( 1, 2, 3 )

∧ 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )
𝑄

2
= 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )

non-linear preprocessing (triangle)
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Subqueries and negative atoms

𝑄
1
′ =  ¬𝑅 ( 1, 2, 3 )

∧ 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )
𝑄

2
= 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )

non-linear preprocessing (triangle)
Equivalent to 𝑄

2
 if 𝑅 = ∅
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Subqueries and negative atoms

𝑄
1
′ =  ¬𝑅 ( 1, 2, 3 )

∧ 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )
𝑄

2
= 𝑆 ( 1, 2 ) ∧ 𝑇 ( 2, 3 ) ∧ 𝑈 ( 3, 1 )

non-linear preprocessing (triangle)
Equivalent to 𝑄

2
 if 𝑅 = ∅

DA for 𝑄 = 𝑃 ∧ 𝑁 implies DA for 𝑄 = 𝑃 ∧ 𝑁′ for every 𝑁′ ⊆ 𝑁!
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Measuring hardness of SJQ

Good candidate for 𝑄 = 𝑄+ ∧ 𝑄−:

Signed-HyperOrder Width

𝑠𝑓ℎ𝑜𝑤 ( 𝑄,𝜋 ) = max𝑄′ ⊆ 𝑄− 𝜄 ( 𝑄+ ∧ 𝑄′,𝜋 )

For 𝑄 a (positive) JQ, and 𝜋 a variable ordering, we can solve DA with

Preprocessing ̃

𝑂( |𝔻|𝜄 ( 𝑄,𝜋 ) )
Access time 𝑂 ( log |𝔻| )
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Measuring hardness of SJQ

Good candidate for 𝑄 = 𝑄+ ∧ 𝑄−:

Signed-HyperOrder Width

𝑠𝑓ℎ𝑜𝑤 ( 𝑄,𝜋 ) = max𝑄′ ⊆ 𝑄− 𝜄 ( 𝑄+ ∧ 𝑄′,𝜋 )

For 𝑄 a (positive) JQ, and 𝜋 a variable ordering, we can solve DA with

Preprocessing ̃

𝑂( |𝔻|𝜄 ( 𝑄,𝜋 ) )
Access time 𝑂 ( log |𝔻| )

signed JQ
̃

𝑂( |𝔻|𝑠𝑓ℎ𝑜𝑤 ( 𝑄, 𝜋 ) )

Our contribution : new island of tractability for Signed JQ!
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A word on sfhow

Signed Fractional HyperOrder Width (and incidentally, our result) generalizes:

𝛽-acyclicity (#SAT and #NCQ are already known tractable)
signed-acyclicity (Model Checking for SCQ known to be tractable)
Nest set width (SAT / Model Checking for NCQ known to be tractable)
A non-fractional version show can be defined (better combined complexity)

Basically, everything that is known to be tractable on SCQ/NCQ.

1. Understanding model counting for β-acyclic CNF-formulas, J. Brault-Baron, F. C., S. Mengel
2. De la pertinence de l’énumération: complexité en logiques propositionnelle et du premier ordre, J. Brault-Baron
3. Tractability Beyond ß-Acyclicity for Conjunctive Queries with Negation, M. Lanzinger
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Our algorithm: a circuit approach
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Relational Circuits

𝑥1 𝑥2 𝑥3

0 0 1

0 1 0

0 1 1

1 0 1

1 0 2

1 1 1

1 1 2

1 2 0

1 2 1

2 0 1

2 0 2

2 2 1

0 0 0

2 2 2
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Relational Circuits

𝑥1 𝑥2 𝑥3

0 0 1

0 1 0

0 1 1

1 0 1

1 0 2

1 1 1

1 1 2

1 2 0

1 2 1

2 0 1

2 0 2

2 2 1

0 0 0

2 2 2
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Relational Circuits

𝑥1 𝑥2 𝑥3

0 0 1

0 1 0

0 1 1

1 0 1

1 0 2

1 1 1

1 1 2

1 2 0

1 2 1

2 0 1

2 0 2

2 2 1

0 0 0

2 2 2
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Ordered Relational Circuits

Factorized representation of relation 𝑅 ⊆ 𝐷
𝑋:

Inputs gates : ⊤ & ⊥
Decision gates
Cartesian products: × -gates
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Ordered Relational Circuits

Factorized representation of relation 𝑅 ⊆ 𝐷
𝑋:

Inputs gates : ⊤ & ⊥
Decision gates
Cartesian products: × -gates

Ordered: decision gates below 𝑥𝑖 only mention 𝑥𝑗 with 𝑗 > 𝑖.
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Direct Access on Relational Circuits

For 𝐶 on domain 𝐷, variables 𝑥1,…,𝑥𝑛, DA
possible :

Preprocessing: 𝑂 ( |𝐶| log |𝐷| )

Access time: 𝑂 ( 𝑛 log |𝐷| )
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Preprocessing
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Preprocessing

Idea : for each gate 𝑣 over 𝑥𝑖 and for each domain value 𝑑
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Preprocessing

Idea : for each gate 𝑣 over 𝑥𝑖 and for each domain value 𝑑
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Preprocessing

Idea : for each gate 𝑣 over 𝑥𝑖 and for each domain value 𝑑

compute the size of the relation where 𝑥𝑖 is set to a value 𝑑′ ≤ 𝑑
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Preprocessing
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Preprocessing
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Preprocessing
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Preprocessing
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Preprocessing
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Preprocessing
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Direct Access 7th solution

Compute the 7th solution 
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Direct Access 7th solution

Compute the 7th solution 
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Direct Access 7th solution

Compute the 7th solution 
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Direct Access 7th solution

Compute the 7th solution →  111
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Direct Access the 13th solution

Compute the 13th solution 
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Direct Access the 13th solution

Compute the 13th solution 
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Direct Access the 13th solution

Compute the 13th solution 
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Direct Access the 13th solution

Compute the 13th solution 
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Direct Access the 13th solution

Compute the 13th solution 
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Direct Access the 13th solution

Compute the 13th solution →  221
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Solving DA for SCQ

SCQ 𝑄 ( 𝑥1,…,𝑥𝑛 ) , 𝜋 = ( 𝑥1,…,𝑥𝑛 ) .

Preprocessing: 

1. Construct 𝜋-ordered circuit 𝐶 of size ̃𝑂( |𝔻|
𝑠𝑓ℎ𝑜𝑤 ( 𝑄,𝜋 )

𝑓 ( 𝑄 ) )
2. Preprocess 𝐶 in time 𝑂 ( |𝐶| log |𝔻| ) .

Direct Access : 

1. Directly on 𝐶
2. in time 𝑂 ( 𝑛 log |𝐷| )  !
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Solving DA for SCQ

SCQ 𝑄 ( 𝑥1,…,𝑥𝑛 ) , 𝜋 = ( 𝑥1,…,𝑥𝑛 ) .
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𝑓 ( 𝑄 ) )
2. Preprocess 𝐶 in time 𝑂 ( |𝐶| log |𝔻| ) .

Direct Access : 

1. Directly on 𝐶
2. in time 𝑂 ( 𝑛 log |𝐷| )  !

𝑄, 𝑛 considered constant here!

The hidden constants 𝑓 ( 𝑄 )  are exponential in |𝑄| for bounded

𝑠𝑓ℎ𝑜𝑤 ( 𝑄 ) .

But polynomial in 𝑄 for bounded 𝑠ℎ𝑜𝑤 ( 𝑄 )  (non fractional question).
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Solving DA for SCQ

SCQ 𝑄 ( 𝑥1,…,𝑥𝑛 ) , 𝜋 = ( 𝑥1,…,𝑥𝑛 ) .

Preprocessing: 

1. Construct 𝜋-ordered circuit 𝐶 of size ̃𝑂( |𝔻|
𝑠𝑓ℎ𝑜𝑤 ( 𝑄,𝜋 )
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2. Preprocess 𝐶 in time 𝑂 ( |𝐶| log |𝔻| ) .

Direct Access : 

1. Directly on 𝐶
2. in time 𝑂 ( 𝑛 log |𝐷| )  !

̃𝑂( |𝔻|
𝑠𝑓ℎ𝑜𝑤 ( 𝑄, 𝜋 ) )

𝑂 ( log |𝔻| )

𝑄, 𝑛 considered constant here!

The hidden constants 𝑓 ( 𝑄 )  are exponential in |𝑄| for bounded

𝑠𝑓ℎ𝑜𝑤 ( 𝑄 ) .

But polynomial in 𝑄 for bounded 𝑠ℎ𝑜𝑤 ( 𝑄 )  (non fractional question).
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DPLL: building circuits

Compilation based on a variation of DPLL :

1. 𝑄 ( 𝔻 ) = ⨄
𝑑 ∈ 𝐷

[ 𝑥1 = 𝑑 ] × 𝑄 [ 𝑥1 = 𝑑 ] ( 𝔻 )

2. 𝑄 ( 𝔻 ) = 𝑄
1
( 𝔻 ) × 𝑄

2
( 𝔻 )  if 𝑄 = 𝑄

1
∧ 𝑄

2
 with 𝑣𝑎𝑟 ( 𝑄

1
) ∩ 𝑣𝑎𝑟 ( 𝑄

2
) = ∅

3. Top down induction + caching

https://florent.capelli.me/cytoscape/dpll.html

31

https://florent.capelli.me/cytoscape/dpll.html


A comment on the complexity of DPLL

If implemented this way, gives a |𝔻|𝑠𝑓ℎ𝑜𝑤 ( 𝑄 ) + 1 complexity…
Workaround: reencode the domain in binary and build a circuit iteratively testing the bits of each

variable.
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Going further
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Related results

1. Extension to ∃SJQ:
Last variable in 𝐶 can be existentially projected without increase in circuit size
Give DA for ∃𝑥𝑘,…,𝑥𝑛𝑄 ( 𝑥1,…,𝑥𝑛 ) .

2. Semi-ring Aggregation
𝑤:𝑋 × 𝐷 → ( 𝕂, ⊕ , ⊗ )

Compute ⨁
𝜏 ∈ 𝑄 ( 𝔻 )

⨂
𝑥 ∈ 𝑋

𝑤 ( 𝑥, 𝜏 ( 𝑥 ) )

3. Lowerbounds: cannot do better than |𝔻|
𝑠𝑓ℎ𝑜𝑤 ( 𝑄 )  preprocessing.
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Work in progress
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Work in progress

1. Aggregation
𝑄 ( 𝑥1, …, 𝑥𝑘, 𝐹 ( 𝑥𝑘 + 1, …, 𝑥𝑛 ) ) , generalizing work by I. Eldar, N. Carmeli, B. Kimelfeld.
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1. Aggregation
𝑄 ( 𝑥1, …, 𝑥𝑘, 𝐹 ( 𝑥𝑘 + 1, …, 𝑥𝑛 ) ) , generalizing work by I. Eldar, N. Carmeli, B. Kimelfeld.

2. Understanding combined complexity for 𝑠𝑓ℎ𝑜𝑤 ( 𝑄 ) , the fractional version of 𝑠ℎ𝑜𝑤
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Work in progress

1. Aggregation
𝑄 ( 𝑥1, …, 𝑥𝑘, 𝐹 ( 𝑥𝑘 + 1, …, 𝑥𝑛 ) ) , generalizing work by I. Eldar, N. Carmeli, B. Kimelfeld.

2. Understanding combined complexity for 𝑠𝑓ℎ𝑜𝑤 ( 𝑄 ) , the fractional version of 𝑠ℎ𝑜𝑤

3. Comparing 𝑠ℎ𝑜𝑤 and 𝛽-hypertree width (the most general parameter for which the complexity is still
unknown).
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