
Dynamic direct access of MSO query evaluation over strings
Pierre Bourhis, Florent Capelli, Stefan Mengel and Cristian Riveros

CRIL, Université d’Artois

ICDT 2025

25 March 2025

1

Variable Set Automata

2

Tagging positions in words

q0

a,b

q1a/{x}

a

q2b/{y}

a,b

b a a a a a

Positions 1 2 3 4 5 6 7 8 9 10 11 12

w a b a b a b

[[A]](w) x y

3

Tagging positions in words

q0

a,b

q1a/{x}

a

q2b/{y}

a,b

b a a a a a

Positions 1 2 3 4 5 6 7 8 9 10 11 12

w a b a b a b

Run 1 x y

[[A]](w) x y

(run 1) 2 4

3.1

Tagging positions in words

q0

a,b

q1a/{x}

a

q2b/{y}

a,b

b a a a a a

Positions 1 2 3 4 5 6 7 8 9 10 11 12

w a b a b a b

Run 1 x y

Run 2 x y

[[A]](w) x y

(run 1) 2 4

(run 2) 5 8

3.2

Tagging positions in words

q0

a,b

q1a/{x}

a

q2b/{y}

a,b

b a a a a a

Positions 1 2 3 4 5 6 7 8 9 10 11 12

w a b a b a b

Run 1 x y

Run 2 x y

Run 3 x y

[[A]](w) x y

(run 1) 2 4

(run 2) 5 8

(run 3) 9 10

3.3

Tagging positions in words

q0

a,b

q1a/{x}

a

q2b/{y}

a,b

b a a a a a

Positions 1 2 3 4 5 6 7 8 9 10 11 12

w a b a b a b

Run 1 x y

Run 2 x y

Run 3 x y

[[A]](w) x y

(run 1) 2 4

3 4

(run 2) 5 8

6 8

7 8

(run 3) 9 10

3.4

Tagging positions in words

q0

a,b

q1a/{x}

a

q2b/{y}

a,b

b a a a a a

Positions 1 2 3 4 5 6 7 8 9 10 11 12

w a b a b a b

Run 1 x y

Run 2 x y

Run 3 x y

[[A]](w) x y

(run 1) 2 4

3 4

(run 2) 5 8

6 8

7 8

(run 3) 9 10

Build a data structure allowing to access each tuple in efficiently.[[A]](w)

3.5

Related formalisms
VSet Automata are akin to:

Document spanners: “span” can be encoded as two variables (start) and (end)s x x e x x

4

Related formalisms
VSet Automata are akin to:

Document spanners: “span” can be encoded as two variables (start) and (end)s x x e x x

MSO over words:

relation for each letter : “there is an at position

order on positions

first order and monadic second order quantifications

Theorem: for each such formula , there exists a vset automate such that .

q0

a,b

q1a/{x}

a

q2b/{y}

a,b

vset automata for

a(x) a a x

<

φ A φ [[A]] =φ [[φ]]

φ(x, y) ≡ a(x) ∧ b(y) ∧ ∀z((x < z ∧ z < y) ⇒ a(z))

A φ φ

4.1

Desirable properties
Determinism: two edges going out of state have distinct labels.

q

q0a

q1
a

Forbidden

q

q0a

q1

a/{x}

Allowed

q

5

Desirable properties
Determinism: two edges going out of state have distinct labels.

q

q0a

q1
a

Forbidden

q

q0a

q1

a/{x}

Allowed

q

Functionality: every path from to a final state tags each variable exactly once.

q0

b

q1a/{x}
a/{y}

a

q3b/{x}
b/{y}

a,b

Not functional

q0

b q1a/{x}

q2

a/{y}

a

q3

b/{y}

a b/{x}

a,b

Functional version

q 0

5.1

Desirable properties
Determinism: two edges going out of state have distinct labels.

q

q0a

q1
a

Forbidden

q

q0a

q1

a/{x}

Allowed

q

Functionality: every path from to a final state tags each variable exactly once.

q0

b

q1a/{x}
a/{y}

a

q3b/{x}
b/{y}

a,b

Not functional

q0

b q1a/{x}

q2

a/{y}

a

q3

b/{y}

a b/{x}

a,b

Functional version

q 0

Functionnality: every is mapped with , variables tagged before reaching .q X q q

5.2

Normalization

Let be an vset automaton. One can construct a deterministic function vset automaton

such that .

Intuition: automata over states .

 may be of size

In this talk: data complexity model where is the data and is the query.

 is considered constant, hence assumed to be deterministic and functional.

A A′

[[A]] = [[A]]′

2Q∪X

A′ exp(A)

w A

⇒ A

6

Direct Access for vset automata

7

Direct access queries
Fix a (deterministic functional) automaton (considered constant).

A direct access query for a word :

input integer ,

output the th tuple of or,

fails if .

where is ordered by lexicographical ordering on .

A(x , … , x)1 k

w ∈ Σ∗

k

k [[A]](w)

k > #[[A]](w)

[[A]](w) [n]X

8

Direct access queries
Fix a (deterministic functional) automaton (considered constant).

A direct access query for a word :

input integer ,

output the th tuple of or,

fails if .

where is ordered by lexicographical ordering on .

A(x , … , x)1 k

w ∈ Σ∗

k

k [[A]](w)

k > #[[A]](w)

[[A]](w) [n]X

2 4

3 4

6 8

9 10

[[A]](w) x y

5 8

7 8

8.1

Direct access queries
Fix a (deterministic functional) automaton (considered constant).

A direct access query for a word :

input integer ,

output the th tuple of or,

fails if .

where is ordered by lexicographical ordering on .

A(x , … , x)1 k

w ∈ Σ∗

k

k [[A]](w)

k > #[[A]](w)

[[A]](w) [n]X

2 4

3 4

6 8

9 10

[[A]](w) x y

5 8

7 8

[[A]][3]

8.2

Direct access queries
Fix a (deterministic functional) automaton (considered constant).

A direct access query for a word :

input integer ,

output the th tuple of or,

fails if .

where is ordered by lexicographical ordering on .

A(x , … , x)1 k

w ∈ Σ∗

k

k [[A]](w)

k > #[[A]](w)

[[A]](w) [n]X

2 4

3 4

6 8

9 10

[[A]](w) x y

5 8

7 8

[[A]][10]

8.3

Direct access queries
Fix a (deterministic functional) automaton (considered constant).

A direct access query for a word :

input integer ,

output the th tuple of or,

fails if .

where is ordered by lexicographical ordering on .

A(x , … , x)1 k

w ∈ Σ∗

k

k [[A]](w)

k > #[[A]](w)

[[A]](w) [n]X

2 4

3 4

6 8

9 10

[[A]](w) x y

5 8

7 8

[[A]][5]

8.4

Direct access complexity
Given of length :

Precomputation phase: construct a data structure in time .

Access phase: given , output in time using .

w ∈ Σ∗ n

D w p(n)

k [[A]](w)[k] a(n) D w

9

Direct access complexity
Given of length :

Precomputation phase: construct a data structure in time .

Access phase: given , output in time using .

w ∈ Σ∗ n

D w p(n)

k [[A]](w)[k] a(n) D w

Naive approach:

Precomputation: is a materialization of in an array.

Access phase: read the th entry of .

D w [[A]](w)

k D w

9.1

Direct access complexity
Given of length :

Precomputation phase: construct a data structure in time .

Access phase: given , output in time using .

w ∈ Σ∗ n

D w p(n)

k [[A]](w)[k] a(n) D w

Naive approach:

Precomputation: is a materialization of in an array.

Access phase: read the th entry of .

D w [[A]](w) p(n) ≥ O(#[[A]](w))

k D w

9.2

Direct access complexity
Given of length :

Precomputation phase: construct a data structure in time .

Access phase: given , output in time using .

w ∈ Σ∗ n

D w p(n)

k [[A]](w)[k] a(n) D w

Naive approach:

Precomputation: is a materialization of in an array.

Access phase: read the th entry of .

D w [[A]](w) p(n) ≥ O(#[[A]](w))

k D w a(n) = O(1)

9.3

Direct access complexity
Given of length :

Precomputation phase: construct a data structure in time .

Access phase: given , output in time using .

w ∈ Σ∗ n

D w p(n)

k [[A]](w)[k] a(n) D w

Naive approach:

Precomputation: is a materialization of in an array.

Access phase: read the th entry of .

D w [[A]](w) p(n) ≥ O(#[[A]](w))

k D w a(n) = O(1)

Can we have better preprocessing without hurting access time too much?

9.4

Contribution
We show that we can solve direct access for in time:

Linear time precomputation ,

Polylogarithmic access time .

 notation hides constants depending on but they are all polynomially bounded if is deterministic and unambiguous.

[[A]](w)

O(∣w∣)

O(log ∣w∣)2

O(⋅) ∣A∣ A

10

Data structure idea

11

Counting reduction
Let .

 is the first position for which

…

… …

τ = [[A]](w)[k]

τ(x)1 p 1

#[[A]] (w) ≥x ≤p 1 1
k

x 1 x k

… …< p 1

… …

… … …

… …

… … …

… …

p 1

k p 1

p 1

> p 1

12

Counting reduction
Let .

 is the first position for which

…

… …

τ = [[A]](w)[k]

τ(x)1 p 1

#[[A]] (w) ≥x ≤p 1 1
k

x 1 x k

… …< p 1

… …

… … …

… …

… … …

… …

p 1

k p 1

p 1

> p 1

12.1

Counting reduction
Let .

 is the first position for which

…

… …

τ = [[A]](w)[k]

τ(x)1 p 1

#[[A]] (w) ≥x ≤p 1 1
k

x 1 x k

… …< p 1

… …

… … …

… …

… … …

… …

p 1

k p 1

p 1

> p 1

Binary search to find : calls to computing by changing

We proceed recursively to find : first value such that

p 1 O(log n) #[[A]] (w) ≥x ≤p1
k p

τ(x)2 p

#[[A]] (w) ≥x =p ,x ≤p1 1 2
k

12.2

Counting reduction
Let .

 is the first position for which

…

… …

τ = [[A]](w)[k]

τ(x)1 p 1

#[[A]] (w) ≥x ≤p 1 1
k

x 1 x k

… …< p 1

… …

… … …

… …

… … …

… …

p 1

k p 1

p 1

> p 1

Binary search to find : calls to computing by changing

We proceed recursively to find : first value such that

p 1 O(log n) #[[A]] (w) ≥x ≤p1
k p

τ(x)2 p

#[[A]] (w) ≥x =p ,x ≤p1 1 2
k −#[[A]] (w)x <p 1 1

12.3

Maintaining matrix products
We can express as a matrix product (transition matrices):

Moreover: and are the same product but for and .

Final data structure : represents a matrix product such that one can quickly

update so that it represents the product where is replaced by .

#[[A]] (w)x≤p

P ⋅ M … M ⋅1 n R

#[[A]] x≤p #[[A]] x≤r M p M r

D A ⋅1 ⋯ ⋅ A r

D A i B i

13

Maintaining matrix products
We can express as a matrix product (transition matrices):

Moreover: and are the same product but for and .

Final data structure : represents a matrix product such that one can quickly

update so that it represents the product where is replaced by .

#[[A]] (w)x≤p

P ⋅ M … M ⋅1 n R

#[[A]] x≤p #[[A]] x≤r M p M r

D A ⋅1 ⋯ ⋅ A r

D A i B i

ABCDEFGH

ABCD EFGH

AB CD EF GH

A B C D E F G H

13.1

Maintaining matrix products
We can express as a matrix product (transition matrices):

Moreover: and are the same product but for and .

Final data structure : represents a matrix product such that one can quickly

update so that it represents the product where is replaced by .

#[[A]] (w)x≤p

P ⋅ M … M ⋅1 n R

#[[A]] x≤p #[[A]] x≤r M p M r

D A ⋅1 ⋯ ⋅ A r

D A i B i

ABCDUFGH

ABCD UFGH

AB CD UF GH

A B C D U F G H

13.2

Maintaining matrix products
We can express as a matrix product (transition matrices):

Moreover: and are the same product but for and .

Final data structure : represents a matrix product such that one can quickly

update so that it represents the product where is replaced by .

#[[A]] (w)x≤p

P ⋅ M … M ⋅1 n R

#[[A]] x≤p #[[A]] x≤r M p M r

D A ⋅1 ⋯ ⋅ A r

D A i B i

ABCDUFGH

ABCD UFGH

AB CD UF GH

A B C D U F G H

Update time: .O(log n)

13.3

Dynamic words

Given data structures for and for ,

:

,

Construct for and for :

D 1 w 1 D 2 w 2

k ≤ ∣w ∣, i, j ≤1 ∣w ∣2

w =1 a … a 1 n w =2 b … b 1 n

D 1
′ w 1

′ D 2
′ w 2

′

w =1
′

a … a 1 k b … b i j a … a k+1 n

w =2
′ b … b b … b 1 j−1 j+1 m

14

Dynamic words

Given data structures for and for ,

:

,

Construct for and for :

D 1 w 1 D 2 w 2

k ≤ ∣w ∣, i, j ≤1 ∣w ∣2

w =1 a … a 1 n w =2 b … b 1 n

D 1
′ w 1

′ D 2
′ w 2

′

w =1
′

a … a 1 k b … b i j a … a k+1 n

w =2
′ b … b b … b 1 j−1 j+1 m

Concatenation of words (cut completely and paste

at the end of)

Insertion of letter (create data structure for in

, cut it and paste it in)

Remove substring (cut the substring)

Update letter (cut the letter and insert a new one in its

place)

w 2

w 1

w =2 a

O(1) w 1

14.1

Dynamic words

Given data structures for and for ,

:

,

Construct for and for :

D 1 w 1 D 2 w 2

k ≤ ∣w ∣, i, j ≤1 ∣w ∣2

w =1 a … a 1 n w =2 b … b 1 n

D 1
′ w 1

′ D 2
′ w 2

′

w =1
′

a … a 1 k b … b i j a … a k+1 n

w =2
′ b … b b … b 1 j−1 j+1 m

Concatenation of words (cut completely and paste

at the end of)

Insertion of letter (create data structure for in

, cut it and paste it in)

Remove substring (cut the substring)

Update letter (cut the letter and insert a new one in its

place)

w 2

w 1

w =2 a

O(1) w 1

Naive approach: in by doing it from scratch.O(n + m)

14.2

Dynamic words

Given data structures for and for ,

:

,

Construct for and for :

D 1 w 1 D 2 w 2

k ≤ ∣w ∣, i, j ≤1 ∣w ∣2

w =1 a … a 1 n w =2 b … b 1 n

D 1
′ w 1

′ D 2
′ w 2

′

w =1
′

a … a 1 k b … b i j a … a k+1 n

w =2
′ b … b b … b 1 j−1 j+1 m

Concatenation of words (cut completely and paste

at the end of)

Insertion of letter (create data structure for in

, cut it and paste it in)

Remove substring (cut the substring)

Update letter (cut the letter and insert a new one in its

place)

w 2

w 1

w =2 a

O(1) w 1

Naive approach: in by doing it from scratch.O(n + m)

Possible : use AVL tree operations to keep matrix product tree from balanced.O(log(n + m))

14.3

Future work
Implementations:

reasonable data structures

updates may be cheap enough to maintain a query on a code base.

Generalizations:

Orders that are not lexicographical

MSO over trees.

15

