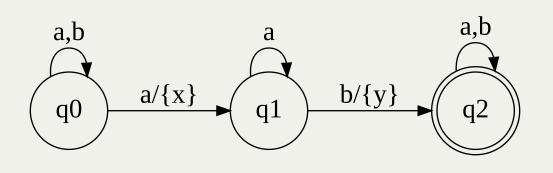
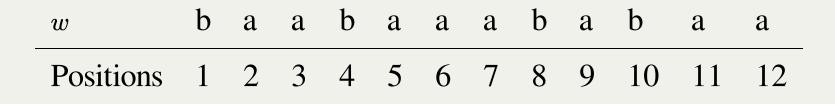
Dynamic direct access of MSO query evaluation over strings

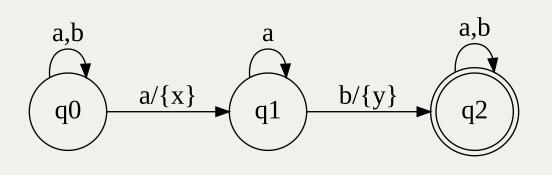
Pierre Bourhis, *Florent Capelli*, Stefan Mengel and Cristian Riveros CRIL, Université d'Artois ICDT 2025 25 March 2025

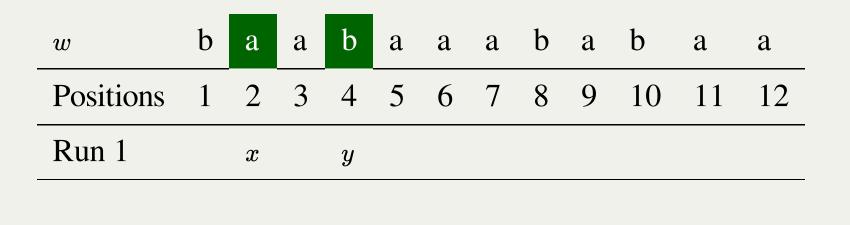
Variable Set Automata



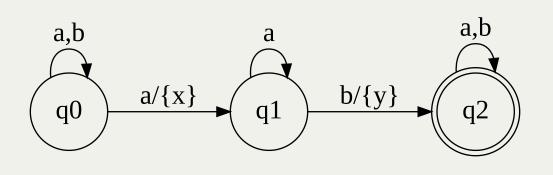


$\llbracket A rbracket(w) = x = y$



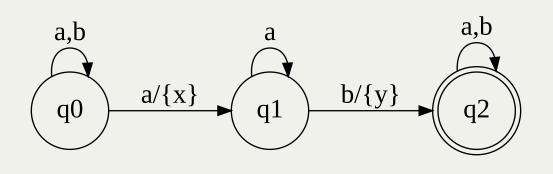


$\llbracket A \rrbracket(w)$	x	y
(run 1)	2	4



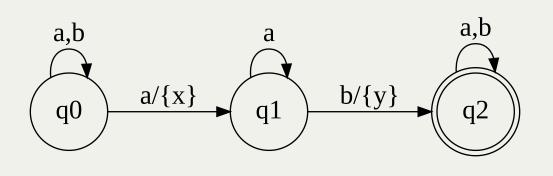
w	b	a	a	b	a	a	a	b	a	b	a	a
Positions	1	2	3	4	5	6	7	8	9	10	11	12
Run 1		x		y								
Run 2					x			y				

$\llbracket A \rrbracket(w)$	x	y
(run 1)	2	4
(run 2)	5	8



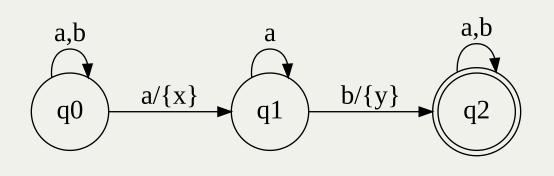
w	b	a	a	b	a	a	a	b	a	b	a	a
Positions	1	2	3	4	5	6	7	8	9	10	11	12
Run 1		x		y								
Run 2					x			y				
Run 3									x	y		

$\llbracket A \rrbracket(w)$	x	y
(run 1)	2	4
(run 2)	5	8
(run 3)	9	10



w	b	a	a	b	a	a	a	b	a	b	a	a
Positions	1	2	3	4	5	6	7	8	9	10	11	12
Run 1		x		y								
Run 2					x			y				
Run 3									x	y		

$\llbracket A \rrbracket(w)$	x	y
(run 1)	2	4
	3	4
(run 2)	5	8
	6	8
	7	8
(run 3)	9	10



w	b	a	a	b	a	a	a	b	a	b	a	a
Positions	1	2	3	4	5	6	7	8	9	10	11	12
Run 1		x		y								
Run 2					x			y				
Run 3									x	y		

Build a data structure allowing to access each tuple in [A](w) efficiently.

$\llbracket A \rrbracket(w)$	x	y
(run 1)	2	4
	3	4
(run 2)	5	8
	6	8
	7	8
(run 3)	9	10

Related formalisms

VSet Automata are akin to:

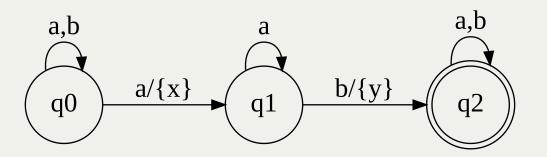
• **Document spanners**: "span" can be encoded as two variables s_x (start x) and e_x (end x)

Related formalisms

VSet Automata are akin to:

- **Document spanners:** "span" can be encoded as two variables s_x (start x) and e_x (end x)
- MSO over words:
 - relation a(x) for each letter a: "there is an a at position x
 - order < on positions</p>
 - first order and monadic second order quantifications
 - **Theorem:** for each such formula φ , there exists a vset automate A_{φ} such that $[A_{\varphi}] = [\varphi]$.

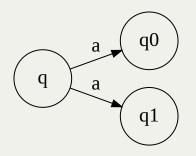
$$arphi(x,y) \equiv a(x) \wedge b(y) \wedge orall z ((x < z \wedge z < y) \Rightarrow a(z))$$



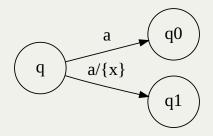
vset automata A_{φ} for φ

Desirable properties

• **Determinism**: two edges going out of state *q* have distinct labels.



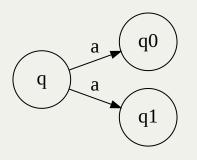
Forbidden



Allowed

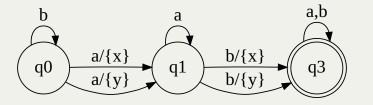
Desirable properties

• **Determinism**: two edges going out of state *q* have distinct labels.

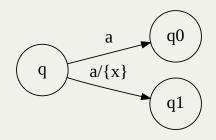


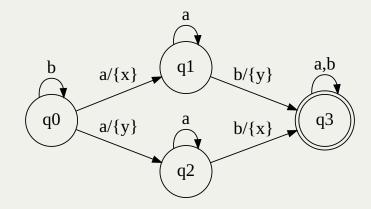
Forbidden

• Functionality: every path from q_0 to a final state tags each variable exactly once.



Not functional

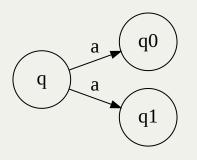




Functional version

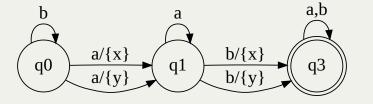
Desirable properties

• **Determinism**: two edges going out of state *q* have distinct labels.



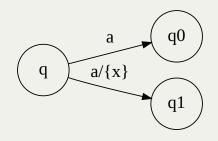
Forbidden

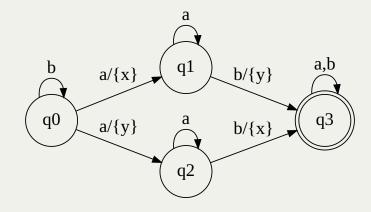
• Functionality: every path from q_0 to a final state tags each variable exactly once.



Not functional

Functionnality: every *q* is mapped with *X_q*, variables tagged before reaching *q*.





Functional version

Normalization

Let A be an vset automaton. One can construct a deterministic function vset automaton A' such that [A] = [A'].

- Intuition: automata over states $2^{Q \cup X}$.
- A' may be of size exp(A)

In this talk: data complexity model where w is the *data* and A is the *query*.

 \Rightarrow A is considered constant, hence assumed to be deterministic and functional.

Direct Access for vset automata

Fix a (deterministic functional) automaton $A(x_1, \ldots, x_k)$ (considered constant).

A direct access query for a word $w \in \Sigma^*$:

- input integer k,
- output the *k*th tuple of [A](w) or,
- **fails** if $k > \# [\![A]\!](w)$.

where $\llbracket A \rrbracket(w)$ is ordered by lexicographical ordering on $[n]^X$.

Fix a (deterministic functional) automaton $A(x_1, \ldots, x_k)$ (considered constant).

A direct access query for a word $w \in \Sigma^*$:

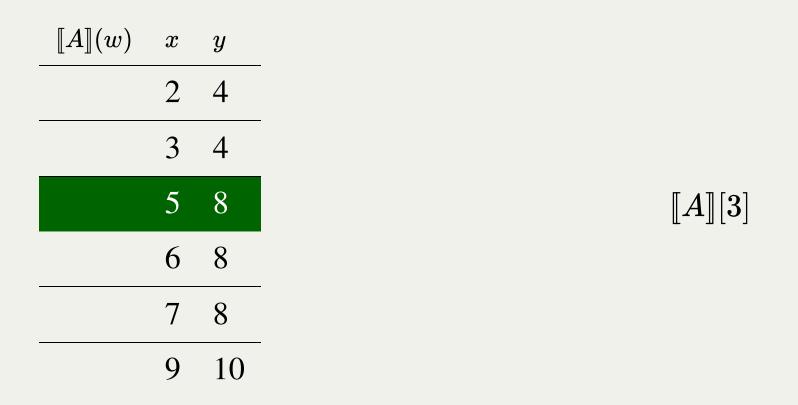
- input integer k,
- output the *k*th tuple of [A](w) or,
- **fails** if $k > \# [\![A]\!](w)$.

$\llbracket A \rrbracket(w)$	x	y
	2	4
	3	4
	5	8
	6	8
	7	8
	9	10

Fix a (deterministic functional) automaton $A(x_1, \ldots, x_k)$ (considered constant).

A direct access query for a word $w \in \Sigma^*$:

- input integer k,
- output the *k*th tuple of [A](w) or,
- **fails** if $k > \# [\![A]\!](w)$.



Fix a (deterministic functional) automaton $A(x_1, \ldots, x_k)$ (considered constant).

A direct access query for a word $w \in \Sigma^*$:

- input integer k,
- output the *k*th tuple of [A](w) or,
- **fails** if $k > \# [\![A]\!](w)$.

$\llbracket A \rrbracket(w)$	x	y
	2	4
	3	4
	5	8
	6	8
	7	8
	9	10

Fix a (deterministic functional) automaton $A(x_1, \ldots, x_k)$ (considered constant).

A direct access query for a word $w \in \Sigma^*$:

- input integer k,
- output the *k*th tuple of [A](w) or,
- **fails** if $k > \# [\![A]\!](w)$.

$\llbracket A \rrbracket(w)$	x	y
	2	4
	3	4
	5	8
	6	8
	7	8
	9	10

Given $w \in \Sigma^*$ of length *n*:

- **Precomputation phase**: construct a data structure D_w in time p(n).
- Access phase: given k, output [A](w)[k] in time a(n) using D_w .

Given $w \in \Sigma^*$ of length *n*:

- **Precomputation phase**: construct a data structure D_w in time p(n).
- Access phase: given k, output [A](w)[k] in time a(n) using D_w .

Naive approach:

- **Precomputation**: D_w is a materialization of [A](w) in an array.
- Access phase: read the *k*th entry of D_w .

Given $w \in \Sigma^*$ of length *n*:

- **Precomputation phase**: construct a data structure D_w in time p(n).
- Access phase: given k, output [A](w)[k] in time a(n) using D_w .

Naive approach:

- **Precomputation**: D_w is a materialization of [A](w) in an array. $p(n) \ge O(\#[A](w))$
- Access phase: read the *k*th entry of D_w .

Given $w \in \Sigma^*$ of length *n*:

- **Precomputation phase**: construct a data structure D_w in time p(n).
- Access phase: given k, output [A](w)[k] in time a(n) using D_w .

Naive approach:

- **Precomputation:** D_w is a materialization of [A](w) in an array. $p(n) \ge O(\#[A](w))$
- Access phase: read the *k*th entry of D_w . a(n) = O(1)

Given $w \in \Sigma^*$ of length *n*:

- **Precomputation phase**: construct a data structure D_w in time p(n).
- Access phase: given k, output [A](w)[k] in time a(n) using D_w .

Naive approach:

- **Precomputation:** D_w is a materialization of [A](w) in an array. $p(n) \ge O(\# [A](w))$
- Access phase: read the *k*th entry of D_w . a(n) = O(1)

Can we have better preprocessing without hurting access time too much?

Contribution

We show that we can solve direct access for [A](w) in time:

- Linear time precomputation O(|w|),
- Polylogarithmic access time $O(\log^2 |w|)$.

 $O(\cdot)$ notation hides constants depending on |A| but they are all polynomially bounded if A is deterministic and unambiguous.

Data structure idea

Let $\tau = \llbracket A \rrbracket(w)[k]$.

$\tau(x_1)$ is the first position p_1 for which

 $\#\llbracket A\rrbracket_{x_1\leq p_1}(w)\geq k$

	x_1	•••	x_k
	$< p_1$	•••	•••
	p_1	•••	•••
		•••	•••
k	p_1	•••	•••
	•••	• • •	•••
	p_1	•••	•••
	$> p_1$	•••	•••

Let $\tau = \llbracket A \rrbracket(w)[k]$.

$\tau(x_1)$ is the first position p_1 for which

 $\#\llbracket A\rrbracket_{x_1\leq p_1}(w)\geq k$

	x_1	• • •	x_k
	$< p_1$	•••	•••
	p_1	•••	•••
		•••	•••
k	p_1	•••	•••
		•••	•••
	p_1	•••	•••
	$> p_1$	•••	•••

Let $\tau = [\![A]\!](w)[k]$.

$\tau(x_1)$ is the first position p_1 for which $\#\llbracket A rbracket_{x_1 < p_1}(w) \geq k$

- Binary search to find p_1 : $O(\log n)$ calls to computing $\# \llbracket A \rrbracket_{x_1 \le p}(w) \ge k$ by changing p
- We proceed recursively to find $\tau(x_2)$: first value p such that

 $\#\llbracket A
rbracket_{x_1=p_1,x_2 < p}(w) \geq k$

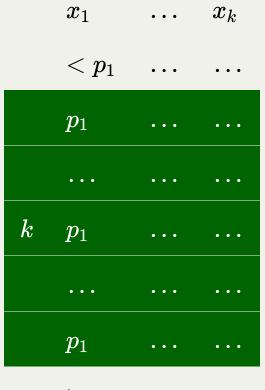
 $x_1 \qquad \ldots \qquad x_k$ $< p_1 \quad \ldots \quad \ldots$ p_1 ••• $k \quad p_1 \quad \dots \quad \dots$ p_1 • • • • • • • • $> p_1 \quad \ldots \quad \ldots$

Let $\tau = [\![A]\!](w)[k]$.

$\tau(x_1)$ is the first position p_1 for which $\#\llbracket A \rrbracket_{x_1 < p_1}(w) \geq k$

- Binary search to find p_1 : $O(\log n)$ calls to computing $\# \llbracket A \rrbracket_{x_1 < p}(w) \ge k$ by changing p
- We proceed recursively to find $\tau(x_2)$: first value p such that

 $\#\llbracket A
rbracket_{x_1=p_1,x_2 < p}(w) \geq k - \#\llbracket A
rbracket_{x_1 < p_1}(w)$



 $> p_1 \quad \ldots \quad \ldots$

We can express $\#[A]_{x \le p}(w)$ as a matrix product (transition matrices):

 $P\cdot M_1\dots M_n\cdot R$

Moreover: $\# \llbracket A \rrbracket_{x \le p}$ and $\# \llbracket A \rrbracket_{x \le r}$ are the same product but for M_p and M_r .

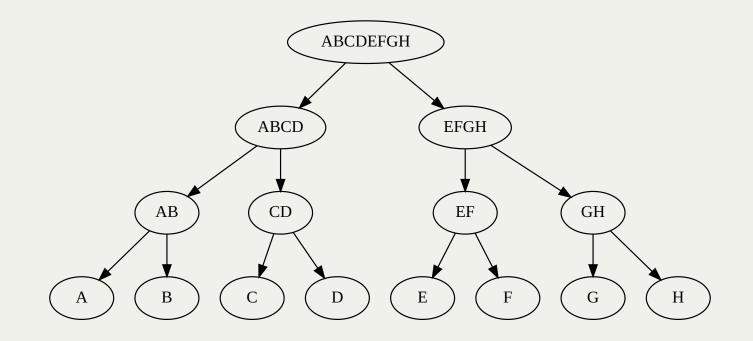
Final data structure *D*: represents a matrix product $A_1 \cdots A_r$ such that one can quickly update *D* so that it represents the product where A_i is replaced by B_i .

We can express $\#[A]_{x \le p}(w)$ as a matrix product (transition matrices):

 $P\cdot M_1\dots M_n\cdot R$

Moreover: $\# \llbracket A \rrbracket_{x \le p}$ and $\# \llbracket A \rrbracket_{x \le r}$ are the same product but for M_p and M_r .

Final data structure *D*: represents a matrix product $A_1 \cdots A_r$ such that one can quickly update *D* so that it represents the product where A_i is replaced by B_i .

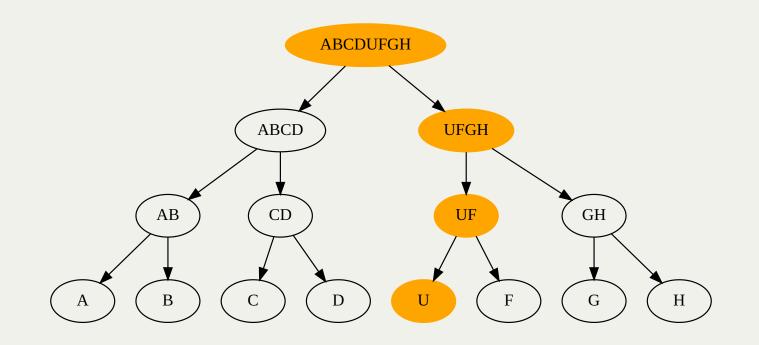


We can express $\#[A]_{x \le p}(w)$ as a matrix product (transition matrices):

 $P\cdot M_1\dots M_n\cdot R$

Moreover: $\# \llbracket A \rrbracket_{x \le p}$ and $\# \llbracket A \rrbracket_{x \le r}$ are the same product but for M_p and M_r .

Final data structure *D*: represents a matrix product $A_1 \cdots A_r$ such that one can quickly update *D* so that it represents the product where A_i is replaced by B_i .

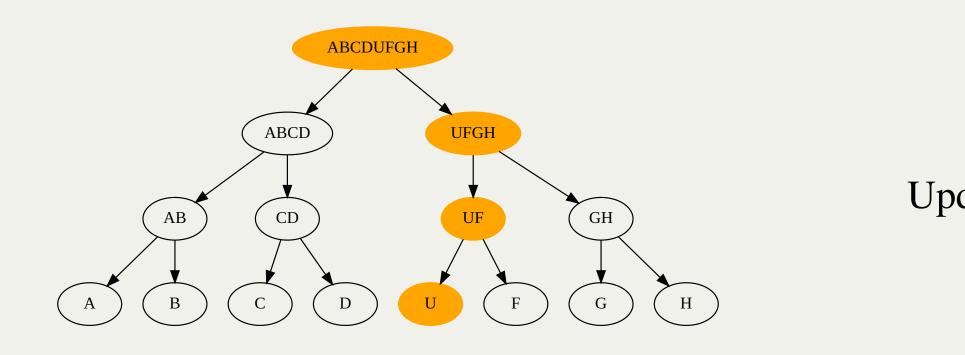


We can express $\#[A]_{x \le p}(w)$ as a matrix product (transition matrices):

 $P\cdot M_1\dots M_n\cdot R$

Moreover: $\# \llbracket A \rrbracket_{x \le p}$ and $\# \llbracket A \rrbracket_{x \le r}$ are the same product but for M_p and M_r .

Final data structure *D*: represents a matrix product $A_1 \cdots A_r$ such that one can quickly update *D* so that it represents the product where A_i is replaced by B_i .



Update time: $O(\log n)$.

Given data structures D_1 for w_1 and D_2 for w_2 , $k\leq |w_1|, i,j\leq |w_2|$:

 $w_1 = a_1 \dots a_n, w_2 = b_1 \dots b_n$

Construct D'_1 for w'_1 and D'_2 for w'_2 :

$$w_1'=a_1\ldots a_k\; oldsymbol{b_i}\ldots oldsymbol{b_j}\; a_{k+1}\ldots a_n$$

 $w_2'=b_1\dots b_{j-1}b_{j+1}\dots b_m$

Given data structures D_1 for w_1 and D_2 for w_2 , $k\leq |w_1|, i,j\leq |w_2|$:

$$w_1 = a_1 \dots a_n, w_2 = b_1 \dots b_n$$

Construct D'_1 for w'_1 and D'_2 for w'_2 :

$$w_1'=a_1\ldots a_k\; oldsymbol{b_i}\ldots oldsymbol{b_j}\; a_{k+1}\ldots a_n$$

$$w_2'=b_1\dots b_{j-1}b_{j+1}\dots b_m$$

• Concatenation of words (cut *w*₂ completely and paste at the end of w_1)

• Insertion of letter (create data structure for $w_2 = a$ in

- Remove substring (cut the substring)
- place)
- O(1), cut it and paste it in w_1)
- Update letter (cut the letter and insert a new one in its

Given data structures D_1 for w_1 and D_2 for w_2 , $k\leq |w_1|, i,j\leq |w_2|$:

 $w_1 = a_1 \dots a_n, w_2 = b_1 \dots b_n$

Construct D'_1 for w'_1 and D'_2 for w'_2 :

$$w_1'=a_1\ldots a_k\; oldsymbol{b_i}\ldots oldsymbol{b_j}\; a_{k+1}\ldots a_n$$

$$w_2'=b_1\ldots b_{j-1}b_{j+1}\ldots b_m$$

at the end of w_1)

• Insertion of letter (create data structure for $w_2 = a$ in

- Remove substring (cut the substring)
- place)

Naive approach: in O(n+m) by doing it from scratch.

- Concatenation of words (cut *w*₂ completely and paste
 - O(1), cut it and paste it in w_1)
- Update letter (cut the letter and insert a new one in its

Given data structures D_1 for w_1 and D_2 for w_2 , $k\leq |w_1|, i,j\leq |w_2|$:

 $w_1 = a_1 \dots a_n, w_2 = b_1 \dots b_n$

Construct D'_1 for w'_1 and D'_2 for w'_2 :

$$w_1'=a_1\ldots a_k\; {\color{black} b_i}\ldots {\color{black} b_j}\; a_{k+1}\ldots a_n$$

$$w_2'=b_1\dots b_{j-1}b_{j+1}\dots b_m$$

at the end of w_1)

• Insertion of letter (create data structure for $w_2 = a$ in

- Remove substring (cut the substring)
- place)

Naive approach: in O(n+m) by doing it from scratch.

Possible $O(\log(n+m))$: use AVL tree operations to keep matrix product tree from balanced.

- Concatenation of words (cut w_2 completely and paste
 - O(1), cut it and paste it in w_1)
- Update letter (cut the letter and insert a new one in its

Future work

- Implementations:
 - reasonable data structures
 - updates may be cheap enough to maintain a query on a code base.
- Generalizations:
 - Orders that are not lexicographical
 - MSO over trees.