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Tagging positions in words
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Tagging positions in words

q0

a,b

q1a/{x}
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b a a a a a

Positions 1 2 3 4 5 6 7 8 9 10 11 12
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3 4
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(run 3) 9 10

Build a data structure allowing to access each tuple in  efficiently.[[A]](w)
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Related formalisms
VSet Automata are akin to:

Document spanners: “span” can be encoded as two variables  (start ) and  (end )s  x x e  x x
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Related formalisms
VSet Automata are akin to:

Document spanners: “span” can be encoded as two variables  (start ) and  (end )s  x x e  x x

MSO over words:

relation  for each letter : “there is an  at position 

order  on positions

first order and monadic second order quantifications

Theorem: for each such formula , there exists a vset automate  such that .

q0

a,b

q1a/{x}

a

q2b/{y}

a,b

vset automata  for 

a(x) a a x

<

φ A  φ [[A  ]] =φ [[φ]]

φ(x, y) ≡ a(x) ∧ b(y) ∧ ∀z((x < z ∧ z < y) ⇒ a(z))

A  φ φ
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Desirable properties
Determinism: two edges going out of state  have distinct labels.

q

q0a

q1
a

Forbidden

q

q0a

q1

a/{x}

Allowed

q
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Allowed
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Functionality: every path from  to a final state tags each variable exactly once.
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q  0

Functionnality: every  is mapped with , variables tagged before reaching .q X  q q
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Normalization

Let  be an vset automaton. One can construct a deterministic function vset automaton 

such that .

Intuition: automata over states .

 may be of size 

In this talk: data complexity model where  is the data and  is the query.

  is considered constant, hence assumed to be deterministic and functional.

A A′

[[A]] = [[A ]]′

2Q∪X

A′ exp(A)

w A

⇒ A
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Direct Access for vset automata
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Direct access queries
Fix a (deterministic functional) automaton  (considered constant).

A direct access query for a word :

input integer ,

output the th tuple of  or,

fails if .

where  is ordered by lexicographical ordering on .

A(x  , … , x  )1 k

w ∈ Σ∗

k

k [[A]](w)

k > #[[A]](w)

[[A]](w) [n]X
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Direct access queries
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input integer ,
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Direct access queries
Fix a (deterministic functional) automaton  (considered constant).

A direct access query for a word :

input integer ,

output the th tuple of  or,

fails if .

where  is ordered by lexicographical ordering on .

A(x  , … , x  )1 k

w ∈ Σ∗

k

k [[A]](w)

k > #[[A]](w)

[[A]](w) [n]X

2 4

3 4

6 8
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7 8
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Direct access complexity
Given  of length :

Precomputation phase: construct a data structure  in time .

Access phase: given , output  in time  using .

w ∈ Σ∗ n

D  w p(n)

k [[A]](w)[k] a(n) D  w
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Direct access complexity
Given  of length :

Precomputation phase: construct a data structure  in time .

Access phase: given , output  in time  using .

w ∈ Σ∗ n

D  w p(n)

k [[A]](w)[k] a(n) D  w

Naive approach:

Precomputation:  is a materialization of  in an array. 

Access phase: read the th entry of . 

D  w [[A]](w) p(n) ≥ O(#[[A]](w))

k D  w a(n) = O(1)

Can we have better preprocessing without hurting access time too much?
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Contribution
We show that we can solve direct access for  in time:

Linear time precomputation ,

Polylogarithmic access time .

 notation hides constants depending on  but they are all polynomially bounded if  is deterministic and unambiguous.

[[A]](w)

O(∣w∣)

O(log ∣w∣)2

O(⋅) ∣A∣ A
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Data structure idea
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Counting reduction
Let .

 is the first position  for which

…

… …

τ = [[A]](w)[k]

τ(x  )1 p  1

#[[A]]  (w) ≥x  ≤p  1 1
k

x  1 x  k

… …< p  1

… …

… … …

… …

… … …

… …

p  1

k p  1

p  1

> p  1
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Maintaining matrix products
We can express  as a matrix product (transition matrices):

Moreover:  and  are the same product but for  and .

Final data structure : represents a matrix product  such that one can quickly

update  so that it represents the product where  is replaced by .

  

#[[A]]  (w)x≤p

P ⋅ M  … M  ⋅1 n R

#[[A]]  x≤p #[[A]]  x≤r M  p M  r

D A  ⋅1 ⋯ ⋅ A  r

D A  i B  i
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Maintaining matrix products
We can express  as a matrix product (transition matrices):

Moreover:  and  are the same product but for  and .

Final data structure : represents a matrix product  such that one can quickly

update  so that it represents the product where  is replaced by .

  

#[[A]]  (w)x≤p
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#[[A]]  x≤p #[[A]]  x≤r M  p M  r

D A  ⋅1 ⋯ ⋅ A  r

D A  i B  i
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Update time: .O(log n)
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Dynamic words

Given data structures  for  and  for ,

:

, 

Construct  for  and  for :

   

 

D  1 w  1 D  2 w  2

k ≤ ∣w  ∣, i, j ≤1 ∣w  ∣2

w  =1 a  … a  1 n w  =2 b  … b  1 n

D  1
′ w  1

′ D  2
′ w  2

′

w  =1
′

a  … a  1 k b  … b  i j a  … a  k+1 n

w  =2
′ b  … b  b  … b  1 j−1 j+1 m
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w  2

w  1

w  =2 a

O(1) w  1

Naive approach: in  by doing it from scratch.O(n + m)

Possible : use AVL tree operations to keep matrix product tree from balanced.O(log(n + m))
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Future work
Implementations:

reasonable data structures

updates may be cheap enough to maintain a query on a code base.

Generalizations:

Orders that are not lexicographical

MSO over trees.
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