A Simple Algorithm for Worst Case Optimal Join and Sampling

Florent Capelli, Oliver Irwin, Sylvain Salvati CRIL, Université d'Artois DATA Lab @ Northeastern 11 April 2025

Joining relations

 $Q\coloneqq R(x_1,x_2)\wedge S(x_1,x_3)\wedge T(x_2,x_3)$

_	R	x_1	x_2	S	x_1	x_3
_		0	0		0	0
-		0	1		0	2
-		2	1		2	3
	T	x_2	x_3			
_		0	2			
-		1	0			

... • • • 1

2

 $Q\coloneqq R(x_1,x_2)\wedge S(x_1,x_3)\wedge T(x_2,x_3)$

	R	x_1	x_2	_	S	x_1	x_3
_		0	0			0	0
_		0	1			0	2
-		2	1	-		2	3
	T	x_2	x_3				
-		0	2				
		1	0				

2 1

... • • •

*X*₁

 $Q\coloneqq R(x_1,x_2)\wedge S(x_1,x_3)\wedge T(x_2,x_3)$

R	x_1	x_2	S	x_1	x_3
	0	0		0	0
	0	1		0	2
	2	1		2	3
T	x_2	x_3			
	0	2			
	1	0			

x₂

1

2

 $Q\coloneqq R(x_1,x_2)\wedge S(x_1,x_3)\wedge T(x_2,x_3)$

R	x_1	x_2	S	x_1	x_3
	0	0		0	0
	0	1		0	2
	2	1		2	3
T	x_2	x_3			
T	$\frac{x_2}{0}$	$\frac{x_3}{2}$			
	$\begin{array}{c} x_2 \\ 0 \\ 1 \end{array}$	$\frac{x_3}{2}$			

... • • •

 $Q\coloneqq R(x_1,x_2)\wedge S(x_1,x_3)\wedge T(x_2,x_3)$

R	x_1	x_2	S	x_1	x_3
	0	0		0	0
	0	1		0	2
	2	1		2	3
T	x_2	x_3			
T	$x_2 \\ 0$	$\frac{x_3}{2}$			
	$ x_2 \\ 0 \\ 1 $	$\frac{x_3}{2}$			

... • • •

 $Q\coloneqq R(x_1,x_2)\wedge S(x_1,x_3)\wedge T(x_2,x_3)$

R	x_1	x_2	S	x_1	x_3
	0	0		0	0
	0	1		0	2
	2	1		2	3
T	x_2	x_3			
T	x_2 0	$\frac{x_3}{2}$			
	$\begin{array}{c} x_2 \\ 0 \\ 1 \end{array}$	x ₃ 2 0			

... • • •

 $Q\coloneqq R(x_1,x_2)\wedge S(x_1,x_3)\wedge T(x_2,x_3)$

R	x_1	x_2	S	x_1	x_3
	0	0		0	0
	0	1		0	2
	2	1		2	3
T	x_2	x_3			
	0	2			
	1	0			

Algorithm overview

Algorithm overview

Algorithm overview

Complexity analysis

One recursive call:

- (O(1) possible using tries).
- branch variable x_i on value $d \in dom$ • filter/project relations with $x_i: \prod_{x_{i+1}...x_n} \sigma_{x_i=d} R$ • Binary search in $O(\log |R|)$ if R ordered

Total complexity: number of recursive calls times $\tilde{O}(m)$ where *m* is the number of atoms.

Number of calls

• a call = a node = a partial assignment. • $\tau := x_1 = d_1, \ldots, x_i = d_i$ current call, not \perp : • No inconsistency. • $R^{\mathbb{D}}[\tau]$ not empty for each $R \in Q$ • $\tau \in Q_i(\mathbb{D})$ for $Q_i = \bigwedge_{R \in Q} \prod_{x_1 \dots x_i} R$ • $\leq \sum_{i=1}^{n} |Q_i(\mathbb{D})|$ such nodes!

Number of calls

• a call = a node = a partial assignment. • $\tau := x_1 = d_1, \ldots, x_i = d_i$ current call, not \perp : • No inconsistency. • $R^{\mathbb{D}}[\tau]$ not empty for each $R \in Q$ • $\tau \in Q_i(\mathbb{D})$ for $Q_i = \bigwedge_{R \in Q} \prod_{x_1 \dots x_i} R$ • $\leq \sum_{i=1}^{n} |Q_i(\mathbb{D})|$ such nodes! • $\tau := x_1 = d_1, \ldots, x_{i+1} = d_{i+1}$ current call is \perp : • $x_1 = d_1, \ldots, x_i = d_i$ is **not** \perp . • $\leq |\mathsf{dom}| \cdot \sum_{i=1}^{n} |Q_i(\mathbb{D})| \perp \text{-nodes!}$

Number of calls

At most $(|dom|+1)\sum_{i=1}^{n} |Q_i(\mathbb{D})|$ calls. **Complexity:** $\tilde{O}(m|\text{dom}| \cdot \sum_{i=1}^{n} |Q_i(\mathbb{D})|)$.

• a call = a node = a partial assignment. • $\tau := x_1 = d_1, \ldots, x_i = d_i$ current call, not \perp : No inconsistency. • $R^{\mathbb{D}}[\tau]$ not empty for each $R \in Q$ • $\tau \in Q_i(\mathbb{D})$ for $Q_i = \bigwedge_{R \in Q} \prod_{x_1 \dots x_i} R$ • $\leq \sum_{i=1}^{n} |Q_i(\mathbb{D})|$ such nodes! • $\tau := x_1 = d_1, \ldots, x_{i+1} = d_{i+1}$ current call is \perp : • $x_1 = d_1, \ldots, x_i = d_i$ is **not** \perp . • $\leq |\mathsf{dom}| \cdot \sum_{i=1}^{n} |Q_i(\mathbb{D})| \perp \text{-nodes!}$

Worst-Case Optimality

Worst case value

Consider databases for *Q* with a bound *N* on the table size:

$$\mathcal{D}_Q^{\leqslant N} = \{\mathbb{D} \mid orall R \in Q, |R^{\mathbb{D}}| \leqslant N\}$$

and let:

$$\mathsf{wc}(Q,N) = \mathsf{sup}_{\mathbb{D}\in\mathcal{D}_Q^{\leqslant N}} \left|Q(\mathbb{D})
ight|$$

wc(Q, N) is the worst case: the size of the biggest answer set possible with query Q and databases where each table are bounded by N.

• Cartesian product: $Q_2 = R_1(x_1) \wedge R_2(x_2)$ has wc $(Q_2, N) = N^2$

- Cartesian product: $Q_2 = R_1(x_1) \wedge R_2(x_2)$ has wc $(Q_2, N) = N^2$
- Similarly: $Q_k = R_1(x_1) \wedge \cdots \wedge R_k(x_k)$ has $wc(Q_2, N) = N^k$

- Cartesian product: $Q_2 = R_1(x_1) \wedge R_2(x_2)$ has wc $(Q_2, N) = N^2$
- Similarly: $Q_k = R_1(x_1) \wedge \cdots \wedge R_k(x_k)$ has wc $(Q_2, N) = N^k$
- Square query: $Q_{\square}=R(x_1,x_2)\wedge R(x_2,x_3)\wedge R(x_3,x_4)\wedge R(x_4,x_1)$

- Cartesian product: $Q_2 = R_1(x_1) \wedge R_2(x_2)$ has wc $(Q_2, N) = N^2$
- Similarly: $Q_k = R_1(x_1) \wedge \cdots \wedge R_k(x_k)$ has $wc(Q_2, N) = N^k$
- Square query: $Q_{\square}=R(x_1,x_2)\wedge R(x_2,x_3)\wedge R(x_3,x_4)\wedge R(x_4,x_1)$
 - wc $(Q_{\Box},N)=N^2$

- Cartesian product: $Q_2 = R_1(x_1) \wedge R_2(x_2)$ has wc $(Q_2, N) = N^2$
- Similarly: $Q_k = R_1(x_1) \wedge \cdots \wedge R_k(x_k)$ has $wc(Q_2, N) = N^k$
- Square query: $Q_{\square}=R(x_1,x_2)\wedge R(x_2,x_3)\wedge R(x_3,x_4)\wedge R(x_4,x_1)$

• wc $(Q_{\Box},N)=N^2$

• Triangle query: $Q_{\Delta} = R(x,y) \wedge S(x,z) \wedge T(y,z)$

- Cartesian product: $Q_2 = R_1(x_1) \wedge R_2(x_2)$ has wc $(Q_2, N) = N^2$
- Similarly: $Q_k = R_1(x_1) \wedge \cdots \wedge R_k(x_k)$ has $wc(Q_2, N) = N^k$
- Square query: $Q_{\square}=R(x_1,x_2)\wedge R(x_2,x_3)\wedge R(x_3,x_4)\wedge R(x_4,x_1)$

• wc $(Q_{\Box},N)=N^2$

- Triangle query: $Q_{\Delta} = R(x,y) \wedge S(x,z) \wedge T(y,z)$
 - Overestimation of the worst case N^2 .

- Cartesian product: $Q_2 = R_1(x_1) \wedge R_2(x_2)$ has wc $(Q_2, N) = N^2$
- Similarly: $Q_k = R_1(x_1) \wedge \cdots \wedge R_k(x_k)$ has $wc(Q_2, N) = N^k$
- Square query: $Q_{\square}=R(x_1,x_2)\wedge R(x_2,x_3)\wedge R(x_3,x_4)\wedge R(x_4,x_1)$

• wc $(Q_{\Box},N)=N^2$

- Triangle query: $Q_{\Delta} = R(x,y) \wedge S(x,z) \wedge T(y,z)$
 - Overestimation of the worst case N^2 .
 - Actually, $wc(Q_{\Delta}, N) = N^{1.5}$

- Cartesian product: $Q_2 = R_1(x_1) \wedge R_2(x_2)$ has wc $(Q_2, N) = N^2$
- Similarly: $Q_k = R_1(x_1) \wedge \cdots \wedge R_k(x_k)$ has $wc(Q_2, N) = N^k$
- Square query: $Q_{\Box} = R(x_1, x_2) \land R(x_2, x_3) \land R(x_3, x_4) \land R(x_4, x_1)$

• wc $(Q_{\Box},N)=N^2$

- Triangle query: $Q_{\Delta} = R(x, y) \wedge S(x, z) \wedge T(y, z)$
 - Overestimation of the worst case N^2 .
 - Actually, $wc(Q_{\Delta}, N) = N^{1.5}$

We know how to compute $\rho(Q)$ such that $wc(Q, N) = \tilde{O}(N^{\rho(Q)})$ (this is known as the AGMbound but we do not need it yet).

Worst case optimal join (WCOJ) algorithms

A join algorithm is worst case optimal (wrt $\mathcal{D}_Q^{\leq N}$) if for every $Q, N \in \mathbb{N}$ and $\mathbb{D} \in \mathcal{D}_Q^{\leq N}$, it computes $Q(\mathbb{D})$ in time

 $\tilde{O}(f(|Q|) \cdot \mathsf{wc}(Q, N))$

- For example, it has to compute $Q_{\Delta}(\mathbb{D})$ in time $N^{1.5}$ where N is the largest relation in \mathbb{D} .
- Naive strategy $(R(x,y) \bowtie S(y,z)) \bowtie T(x,z)$ may take $N^2 >> N^{1.5}$.

Existing WCOJ Algorithm

Rich literature:

- NPRR join (PODS 2012): usual join plans but with relations partitionned into high/low degree tuples.
- Leapfrog Triejoin
- Generic Join: both branch and bound algorithm as ours but more complex analysis or data structures.
- PANDA

$$egin{aligned} |Q_i(\mathbb{D})| &= |\bigwedge_{R\in Q} \prod_{x_1\ldots x_i} R^{\mathbb{D}} \ &= |\bigwedge_{R\in Q} R^{\mathbb{D}'}| \ &= |Q(\mathbb{D}')| \end{aligned}$$

where
$$R^{\mathbb{D}'}=\prod_{x_1\ldots x_i}R^{\mathbb{D}} imes \{0\}^{X_R\setminus x_1,\ldots,x_i}$$

$$egin{aligned} |Q_i(\mathbb{D})| &= |\bigwedge_{R\in Q} \prod_{x_1\ldots x_i} R^{\mathbb{D}}| \ &= |\bigwedge_{R\in Q} R^{\mathbb{D}'}| \ &= |Q(\mathbb{D}')| \end{aligned}$$

Crucial observation:

- $ullet \ |R^{\mathbb{D}'}| = |\prod_{x_1 \ldots x_i} R^{\mathbb{D}}| \le |R^{\mathbb{D}}| \le N$ • Hence $\mathbb{D}' \in \mathcal{D}_Q^{\leq N}$. $ullet \ |Q_i(\mathbb{D})| = |Q(\mathbb{D}')| \leq \mathsf{wc}(Q,N)$

where $R^{\mathbb{D}'} = \prod_{x_1 \ldots x_i} R^{\mathbb{D}} imes \{0\}^{X_R \setminus x_1, \ldots, x_i}$

$$egin{aligned} |Q_i(\mathbb{D})| &= |\bigwedge_{R \in Q} \prod_{x_1 \dots x_i} R^{\mathbb{D}}| & ext{Crucial obs} \ &= |\bigwedge_{R \in Q} R^{\mathbb{D}'}| & ext{ } &$$

where
$$R^{\mathbb{D}'} = \prod_{x_1 \ldots x_i} R^{\mathbb{D}} imes \{0\}^{X_R \setminus x_1, \ldots, x_i}$$

The complexity of the branch and bound algorithm is

- servation:
- $|\prod_{x_1\ldots x_i} R^{\mathbb{D}}| \leq |R^{\mathbb{D}}| \leq N$ $\mathbb{D}'\in\mathcal{D}_Q^{\leqslant N}.$ $ullet \ |Q_i(\mathbb{D})| = |Q(\mathbb{D}')| \leq \mathsf{wc}(Q,N)$

$$egin{aligned} |Q_i(\mathbb{D})| &= |\bigwedge_{R \in Q} \prod_{x_1 \dots x_i} R^{\mathbb{D}}| & ext{Crucial obs} \ &= |\bigwedge_{R \in Q} R^{\mathbb{D}'}| & ext{ } &$$

where
$$R^{\mathbb{D}'} = \prod_{x_1 \ldots x_i} R^{\mathbb{D}} imes \{0\}^{X_R \setminus x_1, \ldots, x_i}$$

The complexity of the branch and bound algorithm is

$$ilde{O}(m|\mathsf{dom}|\cdot\sum_{i=1}^n|Q_i(\mathbb{D})|)$$

- servation:
- $|\prod_{x_1\ldots x_i} R^{\mathbb{D}}| \leq |R^{\mathbb{D}}| \leq N$ $\mathbb{D}'\in\mathcal{D}_Q^{\leqslant N}.$ $ullet \ |Q_i(\mathbb{D})| = |Q(\mathbb{D}')| \leq \mathsf{wc}(Q,N)$

$$\begin{aligned} |Q_i(\mathbb{D})| &= |\bigwedge_{R \in Q} \prod_{x_1 \dots x_i} R^{\mathbb{D}}| \\ &= |\bigwedge_{R \in Q} R^{\mathbb{D}'}| \\ &= |Q(\mathbb{D}')| \end{aligned} \qquad Crucial obs$$

$$\begin{aligned} & \bullet \ |R^{\mathbb{D}'}| = | \\ & \bullet \ \text{Hence I} \end{aligned}$$

where
$$R^{\mathbb{D}'} = \prod_{x_1 \ldots x_i} R^{\mathbb{D}} imes \{0\}^{X_R \setminus x_1, \ldots, x_i}$$

The complexity of the branch and bound algorithm is

 $\tilde{O}(m|\mathsf{dom}|\cdot n\mathsf{wc}(Q,N))$

- servation:
- $|\prod_{x_1\ldots x_i} R^{\mathbb{D}}| \leq |R^{\mathbb{D}}| \leq N$ $\mathbb{D}'\in\mathcal{D}_Q^{\leqslant N}.$ $ullet \ |Q_i(\mathbb{D})| = |Q(\mathbb{D}')| \leq \mathsf{wc}(Q,N)$

$$\begin{aligned} |Q_i(\mathbb{D})| &= |\bigwedge_{R \in Q} \prod_{x_1 \dots x_i} R^{\mathbb{D}}| \\ &= |\bigwedge_{R \in Q} R^{\mathbb{D}'}| \\ &= |Q(\mathbb{D}')| \end{aligned} \qquad Crucial obs$$

$$\begin{aligned} & \bullet \ |R^{\mathbb{D}'}| = | \\ & \bullet \ \text{Hence I} \end{aligned}$$

where
$$R^{\mathbb{D}'} = \prod_{x_1 \ldots x_i} R^{\mathbb{D}} imes \{0\}^{X_R \setminus x_1, \ldots, x_i}$$

The complexity of the branch and bound algorithm is

 $\tilde{O}(mn \cdot |\mathsf{dom}| \cdot \mathsf{wc}(Q, N))$

- servation:
- $|\prod_{x_1\ldots x_i} R^{\mathbb{D}}| \leq |R^{\mathbb{D}}| \leq N$ $\mathbb{D}'\in\mathcal{D}_Q^{\leqslant N}.$ $ullet \ |Q_i(\mathbb{D})| = |Q(\mathbb{D}')| \leq \mathsf{wc}(Q,N)$

Make the domain binary!

R x	y	$ ilde{R}^b$	x^2	x^1	x^0	y^2	y^1	y^0
1	2		0	0	1	0	1	0
2	1		0	1	0	0	0	1
3	0		0	1	1	0	0	0

- $Q \rightsquigarrow \tilde{Q}^b$ has *bn* variables
- $\mathbb{D} \rightsquigarrow \tilde{\mathbb{D}}^b$ for $b = \log |\mathsf{dom}|$. Database has roughly the same bitsize but size 2 domain!

WCOJ finally

- To compute $Q(\mathbb{D})$ run simple branch and bound algorithm on $(\tilde{Q}^b, \tilde{\mathbb{D}}^b)$:
 - runs in time $\tilde{O}(m \cdot (n \log |\mathsf{dom}|) \cdot 2\mathsf{wc}(\tilde{Q}^b, N, 2))$
 - where $wc(\tilde{Q}^b, N, 2)$ is the worst case for \tilde{Q}^b on relations of size $\leq N$ and domain 2.
 - $wc(\tilde{Q}^b, N, 2) \le wc(Q, N)$ by reconverting back to larger domain.

We hence compute $Q(\mathbb{D})$ in time $\tilde{O}(mn \cdot wc(Q, N))$!

Sampling answers uniformly

Problem

Given Q and \mathbb{D} , sample $\tau \in Q(\mathbb{D})$ with probability $\frac{1}{|Q(\mathbb{D})|}$ or fail if $Q(\mathbb{D}) = \emptyset$. Naive algorithm:

- materialize $Q(\mathbb{D})$ in a table
- sample $i \leq |Q(\mathbb{D})|$ uniformly
- output $Q(\mathbb{D})[i]$.

Complexity using WCOJ: $\tilde{O}(wc(Q, N))$.

16

Problem

Given Q and \mathbb{D} , sample $\tau \in Q(\mathbb{D})$ with probability $\frac{1}{|Q(\mathbb{D})|}$ or fail if $Q(\mathbb{D}) = \emptyset$. Naive algorithm:

- materialize $Q(\mathbb{D})$ in a table
- sample $i \leq |Q(\mathbb{D})|$ uniformly
- output $Q(\mathbb{D})[i]$.

Complexity using WCOJ: $\tilde{O}(wc(Q, N))$.

We can do better: (expected) time $\tilde{O}(\frac{w}{|c|})$

PODS 23: [Deng, Lu, Tao] and [Kim, Ha, Fletcher, Han]

$$rac{\mathsf{vc}(Q,N)}{Q(\mathbb{D})|+1} poly(|Q|))$$

Problem

Given Q and \mathbb{D} , sample $\tau \in Q(\mathbb{D})$ with probability $\frac{1}{|Q(\mathbb{D})|}$ or fail if $Q(\mathbb{D}) = \emptyset$. Naive algorithm:

- materialize $Q(\mathbb{D})$ in a table
- sample $i \leq |Q(\mathbb{D})|$ uniformly
- output $Q(\mathbb{D})[i]$.

Complexity using WCOJ: $\tilde{O}(wc(Q, N))$.

We can do better: (expected) time $\tilde{O}(\frac{w}{|c|})$

PODS 23: [Deng, Lu, Tao] and [Kim, Ha, Fletcher, Han]

Let's do a modular proof of this fact!

$$rac{\mathsf{vc}(Q,N)}{Q(\mathbb{D})|+1} poly(|Q|))$$

Revisiting the problem

Sampling answers reduces to sampling T-leaves in a tree with (T, \bot) -labeled leaves.

Sampling leaves, the easy way

- ℓ(t): number of T-leaves below t is known
 Recursively sample uniformly a ⊤-leaf in t_i with probability
- Recursively sample $\frac{\ell(t_i)}{\ell(t)}$.
- A leaf in $\ell(t_i)$ will hence be sampled with probability

$$rac{1}{\ell(t_i)} imesrac{\ell(t_i)}{\ell(t)}=rac{1}{\ell(t)}$$

Sampling leaves, the easy way

- ℓ(t): number of T-leaves below t is known
 Recursively sample uniformly a ⊤-leaf in t_i with probability
- Recursively sample $\frac{\ell(t_i)}{\ell(t)}$.
- A leaf in $\ell(t_i)$ will hence be sampled with probability

Uniform!

$$rac{1}{\ell(t_i)} imesrac{\ell(t_i)}{\ell(t)}=rac{1}{\ell(t)}$$

Sampling leaves with a nice oracle

- known
- $rac{upb(t_i)}{upb(t)}$.

- upb(t): upperbound on the number of $|\mathsf{T}|$ -leaves below t is
- Recursively sample uniformly a \top -leaf in t_i with probability

• Fail with probability $1 - \sum_{i} \frac{upb(t_i)}{upb(t)}$ or upon encountering \square .

Only makes sense if $\sum_{i} upb(t_i) \leq upb(t)$.

Sampling leaves with a nice oracle

- known
- $rac{upb(t_i)}{upb(t)}$.

Las Vegas uniform sampling algorithm:

- each leaf is output with probability $\frac{1}{ubp(t)}$,
- fails with proba $1 \frac{\ell(t)}{upb(t)}$ where $\ell(t)$ is the number of **T**-leaves under t. **Repeat until output:** $O(\frac{upb(r)}{\ell(r)})$ expected calls, where *r* is the root.

- upb(t): upperbound on the number of $|\mathsf{T}|$ -leaves below t is
- Recursively sample uniformly a \top -leaf in t_i with probability

• Fail with probability $1 - \sum_{i} \frac{upb(t_i)}{upb(t)}$ or upon encountering \square .

Only makes sense if $\sum_{i} upb(t_i) \leq upb(t)$.

Upper bound oracles for conjunctive queries

• Node *t*: partial assignment $\tau_t := (x_1 = d_1, \dots, x_i = d_i)$ • Number of \top leaves below $t: |Q(\mathbb{D})[\tau_t]|$. • upb(t)???: look for worst case bounds!

Upper bound oracles for conjunctive queries

AGM bound: there exists positive rational numbers $(\lambda_R)_{R \in Q}$ such that

$$|Q(\mathbb{D})| \leq \prod_{R \in Q} |R^{\mathbb{D}}|^{\lambda_R} \leq \mathsf{wc}(Q,N)$$

• Node *t*: partial assignment $\tau_t := (x_1 = d_1, \dots, x_i = d_i)$ • Number of \top leaves below $t: |Q(\mathbb{D})[\tau_t]|$. • *upb(t)???*: look for worst case bounds!

Upper bound oracles for conjunctive queries

AGM bound: there exists positive rational numbers $(\lambda_R)_{R \in Q}$ such that

$$|Q(\mathbb{D})| \leq \prod_{R \in Q} |R^{\mathbb{D}}|^{\lambda_R} \leq \mathsf{wc}(Q,N)$$

Define *upb*(

• Node *t*: partial assignment $\tau_t := (x_1 = d_1, \dots, x_i = d_i)$ • Number of \top leaves below $t: |Q(\mathbb{D})[\tau_t]|$. • *upb(t)???*: look for worst case bounds!

$$(t) = \prod_{R \in Q} | {oldsymbol R}^{\mathbb D}[au_t] |^{\lambda_R} \leq \mathsf{wc}(Q,N)$$
 :

• it is an upper bound on $|Q(\mathbb{D})[\tau_t]|$, • it is supperadditive: $upb(t) \ge \sum_{d \in dom} upb(t_d)$ • value of *upb* at the root of the tree: wc(Q, N)!

Wrapping up sampling

Given a super-additive function upperbounding the number of T-leaves in a tree at each node, we have:

expected calls.

Wrapping up sampling

Given a super-additive function upperbounding the number of T-leaves in a tree at each node, we have:

> Las Vegas uniform sampling algorithm: • each leaf /answer is output with probability $\frac{1}{ubp(t)} = \frac{1}{wc(Q,N)}$ • fails with proba $1 - \frac{\ell(t)}{upb(t)} = 1 - \frac{|Q(\mathbb{D})|}{wc(Q,N)}$ **Repeat until output:** $O(\frac{upb(r)}{\ell(r)}) = \frac{wc(Q,N)}{1+|Q(\mathbb{D})|}$ expected calls.

Wrapping up sampling

Given a super-additive function upperbounding the number of T-leaves in a tree at each node, we have:

Final complexity: binarize to navigate the tree in $\tilde{O}(nm)$: $\tilde{O}(nm \cdot \frac{wc(Q,N)}{1+|Q(\mathbb{D})|})$

Matches existing results, proof more modular.

Beyond Cardinality Constraints

Worst case and constraints

So far we have considered worst case wrt this class:

- $ullet \ \mathcal{D}_Q^{\leqslant N} = \{ \mathbb{D} \mid orall R \in Q, |R^{\mathbb{D}}| \leqslant N \}$
- ullet wc $(Q,N)=\sup_{\mathbb{D}\in\mathcal{D}_{O}^{\leqslant N}}|Q(\mathbb{D})|$

Each relation is subject to a cardinality constraint of size N.

What if we know that our instance has some extra properties (e.g., a *functional dependency*)

- We know $\mathbb{D} \in \mathcal{C} \subseteq \mathcal{D}_Q^{\leq N}$
- We want the join to run in $\tilde{O}(f(|Q|) \cdot wc(Q, C))$ where $wc(Q, C) := \sup_{\mathbb{D} \in C} |Q(\mathbb{D})|$.

In this case, we say that our algorithm is worst case optimal wrt *C*.

 $Q=R(x_1,x_2)\wedge S(x_2,x_3).$

We have: $wc(Q, N) = N^2$.

 $Q=R(x_1,x_2)\wedge S(x_2,x_3).$

We have: $wc(Q, N) = N^2$.

- Let C be the class of databases where $|R| \le N, |S| \le N$ and R respect functional dependency $x_2 \to x_1$.
- $wc(Q, C) \leq N$ because each tuple of $S^{\mathbb{D}}$ can be extended to *at most one solution*.

functional dependency $x_2 \rightarrow x_1$. *e solution*.

 $Q=R(x_1,x_2)\wedge S(x_2,x_3).$

We have: $wc(Q, N) = N^2$.

- Let C be the class of databases where $|R| \le N, |S| \le N$ and R respect functional dependency $x_2 \to x_1$.
- $wc(Q, C) \leq N$ because each tuple of $S^{\mathbb{D}}$ can be extended to *at most one solution*.

Is our simple join worst case optimal for this class?

functional dependency $x_2 \rightarrow x_1$. *e solution*.

 $Q=R(x_1,x_2)\wedge S(x_2,x_3).$

We have: $wc(Q, N) = N^2$.

- Let C be the class of databases where $|R| \leq N, |S| \leq N$ and R respect functional dependency $x_2 \rightarrow x_1$.
- $wc(Q, C) \leq N$ because each tuple of $S^{\mathbb{D}}$ can be extended to *at most one solution*.

Is our simple join worst case optimal for this class?

Short answer: yes if x_2 is set before x_1 .

Prefix closed classes

Recall the complexity of our algorithm: $\tilde{O}(m|\text{dom}|\sum_{i=1}^{n}|Q_i(\mathbb{D})|))$ where Q_i A class of database C for Q is **prefix closed for order** $\pi = (x_1, \ldots, x_n)$ if

 $|Q_i(\mathbb{D})| \leq \mathsf{wc}(\mathcal{C})$

 $\mathcal{D}_{O}^{\leq N}$ is prefix closed (for any order)!

Our algorithm is (almost) worst case optimal as long as we use an order for which C is prefix closed!

$$egin{aligned} &i = igwedge_{R \in Q} \prod_{x_1, \dots, x_i} R \ & ext{for each } i ext{ and } \mathbb{D} \in \mathcal{C} centcolor \end{aligned}$$

Acyclic functional dependencies

 $F = (X_1 \rightarrow Y_1, \dots, X_k \rightarrow Y_k)$ is a set of functional dependencies:

- G(F): vertices are the variables and $x \to y$ if $x \in X_i$ and $y \in Y_i$ for some *i*.
- If G(F) is acyclic, then let $\pi = x_1, \ldots, x_n$ be a topological sort of G(F). Then

$$\mathcal{C}_F^N = \{\mathbb{D} \mid \mathbb{D} ext{ respects } F\} \cap \mathcal{D}_Q^{\leqslant N}$$

is **prefix closed for order** π (exactly the same proof as for cardinality constraints). Hence our algorithm is worst case optimal wrt \mathcal{C}_F^N (as long as we follow π).

We need to show that this functional dependencies transfer in the binarised setting but it is almost immediate.

Degree constraints

A degree constraint is a constraint $(X, Y, N_{Y|X})$ where $X \subseteq Y$. A relation *R* verifies the constraint if

$$\max_{ au \in \mathsf{dom}^X} \prod_Y R[au] | \leq N_{Y|X}$$

- Cardinality constraint = degree constraint with $X = \emptyset$.
- Functional dependency = degree constraint with $N_{Y|X} = 1$.

Acyclic degree constraints

 $\Delta = \{(X_1, Y_1, N_1) \dots, (X_k, Y_k, N_k)\}$ set of degree constraints.

- $G(\Delta)$: vertices are the variables and $x \to y$ if $x \in X_i$ and $y \in Y_i$ for some *i*.
- If $G(\Delta)$ is acyclic, then let $\pi = x_1, \ldots, x_n$ be a topological sort of $G(\Delta)$. Then

$$\mathcal{C}^N_\Delta = \{\mathbb{D} \mid \mathbb{D} ext{ respects } \Delta\} \cap \mathcal{D}^{\leqslant N}_Q$$

is **prefix closed for order** π (exactly the same proof as for cardinality constraints). Hence our algorithm is worst case optimal wrt \mathcal{C}^N_{Λ} (as long as we follow π).

We need to show that this functional dependencies transfer in the binarised setting but it is almost immediate.

Bonus: sampling acyclic degree constraints

We can find (λ_R) such that $\prod_{R \in Q} |R^{\mathbb{D}}|^{\lambda_R} \leq \tilde{O}(wc(Q, \mathcal{C}^N_{\Delta}))$ for any $\mathbb{D} \in \mathcal{C}^N_{\Delta}$ (polymatroid bound). Define $upb(t) := \prod_{R \in Q} |R^{\mathbb{D}}[\tau_t]|^{\lambda_R}$:

- upperbound of $Q(\mathbb{D})[\tau_t]$ for any $\mathbb{D} \in \mathcal{C}^N_{\Lambda}$,
- superadditive.

We have sampling with complexity $\tilde{O}(nm \cdot \frac{\text{wc}(Q, C_{\Delta}^{N})}{1+|Q(\mathbb{D})|})$

Conclusion

- Simple algorithms and analysis
- Modular:
 - join is worst-case optimal as soon as the class is prefix closed
 - sampling is in $\frac{wc(Q,C)}{|Q(\mathbb{D})|}$ as long as one can provide a super additive upper bound

Future work:

- Other classes such as:
 - cyclic FD,
 - general system of degree constraints (as PANDA)
- Explore dynamic ordering: can we capture more classes?