
A Simple Algorithm for Worst Case Optimal Join and
Sampling

Florent Capelli, Oliver Irwin, Sylvain Salvati

CRIL, Université d’Artois

DATA Lab @ Northeastern

11 April 2025

1

Joining relations

2

A simple algorithm for joins

0 0

0 1

2 1

0 0

0 2

2 3

0 2

1 0

1 2

:::

Q −: R(x ​,x ​) ∧1 2 S(x ​,x ​) ∧1 3 T (x ​,x ​)2 3

R x ​1 x ​2 S x ​1 x ​3

T x ​2 x ​3

3

A simple algorithm for joins

0 0

0 1

2 1

0 0

0 2

2 3

0 2

1 0

1 2

:::

Q −: R(x ​,x ​) ∧1 2 S(x ​,x ​) ∧1 3 T (x ​,x ​)2 3

R x ​1 x ​2 S x ​1 x ​3

T x ​2 x ​3

3.1

A simple algorithm for joins

0 0

0 1

2 1

0 0

0 2

2 3

0 2

1 0

1 2

:::

Q −: R(x ​,x ​) ∧1 2 S(x ​,x ​) ∧1 3 T (x ​,x ​)2 3

R x ​1 x ​2 S x ​1 x ​3

T x ​2 x ​3

3.2

A simple algorithm for joins

0 0

0 1

2 1

0 0

0 2

2 3

0 2

1 0

1 2

:::

Q −: R(x ​,x ​) ∧1 2 S(x ​,x ​) ∧1 3 T (x ​,x ​)2 3

R x ​1 x ​2 S x ​1 x ​3

T x ​2 x ​3

3.3

A simple algorithm for joins

0 0

0 1

2 1

0 0

0 2

2 3

0 2

1 0

1 2

:::

Q −: R(x ​,x ​) ∧1 2 S(x ​,x ​) ∧1 3 T (x ​,x ​)2 3

R x ​1 x ​2 S x ​1 x ​3

T x ​2 x ​3

3.4

A simple algorithm for joins

0 0

0 1

2 1

0 0

0 2

2 3

0 2

1 0

1 2

:::

Q −: R(x ​,x ​) ∧1 2 S(x ​,x ​) ∧1 3 T (x ​,x ​)2 3

R x ​1 x ​2 S x ​1 x ​3

T x ​2 x ​3

3.5

A simple algorithm for joins

0 0

0 1

2 1

0 0

0 2

2 3

0 2

1 0

1 2

:::

Q −: R(x ​,x ​) ∧1 2 S(x ​,x ​) ∧1 3 T (x ​,x ​)2 3

R x ​1 x ​2 S x ​1 x ​3

T x ​2 x ​3

3.6

Algorithm overview

4

Algorithm overview

4.1

Algorithm overview

4.2

Complexity analysis

One recursive call:

branch variable on value

filter/project relations with :

Binary search in if ordered

(possible using tries).

Total complexity: number of recursive calls times where is the number of atoms.

x ​i d ∈ dom

x ​i σ ​R∏x ​…x ​i+1 n
x ​=di

O(log ∣R∣) R

O(1)

(m)O
~

m

5

Number of calls

a call = a node = a partial assignment.

 current call, not :

No inconsistency.

 not empty for each

 for

 such nodes!

τ := x ​ =1 d ​, … ,x ​ =1 i d ​i ⊥

R [τ]D R ∈ Q

τ ∈ Q ​(D)i Q ​ =i ​ ​ R⋀R∈Q∏x ​…x ​1 i

≤ ​ ∣Q ​(D)∣∑i=1
n

i

6

Number of calls

a call = a node = a partial assignment.

 current call, not :

No inconsistency.

 not empty for each

 for

 such nodes!

τ := x ​ =1 d ​, … ,x ​ =1 i d ​i ⊥

R [τ]D R ∈ Q

τ ∈ Q ​(D)i Q ​ =i ​ ​ R⋀R∈Q∏x ​…x ​1 i

≤ ​ ∣Q ​(D)∣∑i=1
n

i

 current call is :

 is not .

 -nodes!

τ := x ​ =1 d ​, … ,x ​ =1 i+1 d ​i+1 ⊥

x ​ =1 d ​, … ,x ​ =1 i d ​i ⊥

≤ ∣dom∣ ⋅ ​ ∣Q ​(D)∣∑i=1
n

i ⊥

6.1

Number of calls

a call = a node = a partial assignment.

 current call, not :

No inconsistency.

 not empty for each

 for

 such nodes!

τ := x ​ =1 d ​, … ,x ​ =1 i d ​i ⊥

R [τ]D R ∈ Q

τ ∈ Q ​(D)i Q ​ =i ​ ​ R⋀R∈Q∏x ​…x ​1 i

≤ ​ ∣Q ​(D)∣∑i=1
n

i

 current call is :

 is not .

 -nodes!

τ := x ​ =1 d ​, … ,x ​ =1 i+1 d ​i+1 ⊥

x ​ =1 d ​, … ,x ​ =1 i d ​i ⊥

≤ ∣dom∣ ⋅ ​ ∣Q ​(D)∣∑i=1
n

i ⊥

At most calls.

Complexity: .

(∣dom∣ + 1) ​ ∣Q ​(D)∣∑i=1
n

i

(m∣dom∣ ⋅O
~

​ ∣Q ​(D)∣)∑i=1
n

i

6.2

Worst-Case Optimality

7

Worst case value
Consider databases for with a bound on the table size:

and let:

 is the worst case: the size of the biggest answer set possible with query and

databases where each table are bounded by .

Q N

D ​ =Q
⩽N {D ∣ ∀R ∈ Q, ∣R ∣ ⩽D N}

wc(Q,N) = sup ​ ∣Q(D)∣D∈D ​

Q
⩽N

wc(Q, N) Q

N

8

Worst case examples

9

Worst case examples
Cartesian product: has Q ​ =2 R ​(x ​) ∧1 1 R ​(x ​)2 2 wc(Q ​,N) =2 N 2

9.1

Worst case examples
Cartesian product: has Q ​ =2 R ​(x ​) ∧1 1 R ​(x ​)2 2 wc(Q ​,N) =2 N 2

Similarly: has Q ​ =k R ​(x ​) ∧1 1 ⋯ ∧ R ​(x ​)k k wc(Q ​,N) =2 Nk

9.2

Worst case examples
Cartesian product: has Q ​ =2 R ​(x ​) ∧1 1 R ​(x ​)2 2 wc(Q ​,N) =2 N 2

Similarly: has Q ​ =k R ​(x ​) ∧1 1 ⋯ ∧ R ​(x ​)k k wc(Q ​,N) =2 Nk

Square query: Q ​ =□ R(x ​,x ​) ∧1 2 R(x ​,x ​) ∧2 3 R(x ,x ​) ∧3 4 R(x ​,x ​)4 1

9.3

Worst case examples
Cartesian product: has Q ​ =2 R ​(x ​) ∧1 1 R ​(x ​)2 2 wc(Q ​,N) =2 N 2

Similarly: has Q ​ =k R ​(x ​) ∧1 1 ⋯ ∧ R ​(x ​)k k wc(Q ​,N) =2 Nk

Square query: Q ​ =□ R(x ​,x ​) ∧1 2 R(x ​,x ​) ∧2 3 R(x ,x ​) ∧3 4 R(x ​,x ​)4 1

wc(Q ​,N) =□ N 2

9.4

Worst case examples
Cartesian product: has Q ​ =2 R ​(x ​) ∧1 1 R ​(x ​)2 2 wc(Q ​,N) =2 N 2

Similarly: has Q ​ =k R ​(x ​) ∧1 1 ⋯ ∧ R ​(x ​)k k wc(Q ​,N) =2 Nk

Square query: Q ​ =□ R(x ​,x ​) ∧1 2 R(x ​,x ​) ∧2 3 R(x ,x ​) ∧3 4 R(x ​,x ​)4 1

wc(Q ​,N) =□ N 2

Triangle query: Q ​ =Δ R(x, y) ∧ S(x, z) ∧ T (y, z)

9.5

Worst case examples
Cartesian product: has Q ​ =2 R ​(x ​) ∧1 1 R ​(x ​)2 2 wc(Q ​,N) =2 N 2

Similarly: has Q ​ =k R ​(x ​) ∧1 1 ⋯ ∧ R ​(x ​)k k wc(Q ​,N) =2 Nk

Square query: Q ​ =□ R(x ​,x ​) ∧1 2 R(x ​,x ​) ∧2 3 R(x ,x ​) ∧3 4 R(x ​,x ​)4 1

wc(Q ​,N) =□ N 2

Triangle query: Q ​ =Δ R(x, y) ∧ S(x, z) ∧ T (y, z)

Overestimation of the worst case .N 2

9.6

Worst case examples
Cartesian product: has Q ​ =2 R ​(x ​) ∧1 1 R ​(x ​)2 2 wc(Q ​,N) =2 N 2

Similarly: has Q ​ =k R ​(x ​) ∧1 1 ⋯ ∧ R ​(x ​)k k wc(Q ​,N) =2 Nk

Square query: Q ​ =□ R(x ​,x ​) ∧1 2 R(x ​,x ​) ∧2 3 R(x ,x ​) ∧3 4 R(x ​,x ​)4 1

wc(Q ​,N) =□ N 2

Triangle query: Q ​ =Δ R(x, y) ∧ S(x, z) ∧ T (y, z)

Overestimation of the worst case .N 2

Actually, wc(Q ​,N) =Δ N 1.5

9.7

Worst case examples
Cartesian product: has Q ​ =2 R ​(x ​) ∧1 1 R ​(x ​)2 2 wc(Q ​,N) =2 N 2

Similarly: has Q ​ =k R ​(x ​) ∧1 1 ⋯ ∧ R ​(x ​)k k wc(Q ​,N) =2 Nk

Square query: Q ​ =□ R(x ​,x ​) ∧1 2 R(x ​,x ​) ∧2 3 R(x ,x ​) ∧3 4 R(x ​,x ​)4 1

wc(Q ​,N) =□ N 2

Triangle query: Q ​ =Δ R(x, y) ∧ S(x, z) ∧ T (y, z)

Overestimation of the worst case .N 2

Actually, wc(Q ​,N) =Δ N 1.5

We know how to compute such that (this is known as the AGM-

bound but we do not need it yet).

ρ(Q) wc(Q, N) = (N)O
~ ρ(Q)

9.8

Worst case optimal join (WCOJ) algorithms
A join algorithm is worst case optimal (wrt) if for every , and , it computes

 in time

For example, it has to compute in time where is the largest relation in .

Naive strategy may take .

D ​Q
⩽N

Q N ∈ N D ∈ D ​Q
⩽N

Q(D)

(f(∣Q∣) ⋅O
~

wc(Q,N))

Q ​(D)Δ N 1.5 N D

(R(x, y) ⋈ S(y, z)) ⋈ T (x, z) N >>2 N 1.5

10

Existing WCOJ Algorithm
Rich literature:

NPRR join (PODS 2012): usual join plans but with relations partitionned into high/low degree tuples.

Leapfrog Triejoin

Generic Join: both branch and bound algorithm as ours but more complex analysis or data structures.

PANDA

11

Refining our previous analysis

where

​

∣Q ​(D)∣i = ∣ ​ ​R ∣
R∈Q

⋀
x ​…x ​1 i

∏ D

= ∣ ​R ∣
R∈Q

⋀ D′

= ∣Q(D)∣′

R =D′

​ R ×∏x ​…x ​1 i

D {0}X ​∖x ​,…,x ​R 1 i

12

Refining our previous analysis

where

​

∣Q ​(D)∣i = ∣ ​ ​R ∣
R∈Q

⋀
x ​…x ​1 i

∏ D

= ∣ ​R ∣
R∈Q

⋀ D′

= ∣Q(D)∣′

R =D′

​ R ×∏x ​…x ​1 i

D {0}X ​∖x ​,…,x ​R 1 i

Crucial observation:

Hence .

∣R ∣ =D′

∣ ​ R ∣ ≤∏x ​…x ​1 i

D ∣R ∣ ≤D N

D ∈′
D ​Q

⩽N

∣Q ​(D)∣ =i ∣Q(D)∣ ≤′
wc(Q, N)

12.1

Refining our previous analysis

where

​

∣Q ​(D)∣i = ∣ ​ ​R ∣
R∈Q

⋀
x ​…x ​1 i

∏ D

= ∣ ​R ∣
R∈Q

⋀ D′

= ∣Q(D)∣′

R =D′

​ R ×∏x ​…x ​1 i

D {0}X ​∖x ​,…,x ​R 1 i

Crucial observation:

Hence .

∣R ∣ =D′

∣ ​ R ∣ ≤∏x ​…x ​1 i

D ∣R ∣ ≤D N

D ∈′
D ​Q

⩽N

∣Q ​(D)∣ =i ∣Q(D)∣ ≤′
wc(Q, N)

The complexity of the branch and bound algorithm is

12.2

Refining our previous analysis

where

​

∣Q ​(D)∣i = ∣ ​ ​R ∣
R∈Q

⋀
x ​…x ​1 i

∏ D

= ∣ ​R ∣
R∈Q

⋀ D′

= ∣Q(D)∣′

R =D′

​ R ×∏x ​…x ​1 i

D {0}X ​∖x ​,…,x ​R 1 i

Crucial observation:

Hence .

∣R ∣ =D′

∣ ​ R ∣ ≤∏x ​…x ​1 i

D ∣R ∣ ≤D N

D ∈′
D ​Q

⩽N

∣Q ​(D)∣ =i ∣Q(D)∣ ≤′
wc(Q, N)

The complexity of the branch and bound algorithm is

(m∣dom∣ ⋅O
~

​ ∣Q ​(D)∣)
i=1

∑
n

i

12.3

Refining our previous analysis

where

​

∣Q ​(D)∣i = ∣ ​ ​R ∣
R∈Q

⋀
x ​…x ​1 i

∏ D

= ∣ ​R ∣
R∈Q

⋀ D′

= ∣Q(D)∣′

R =D′

​ R ×∏x ​…x ​1 i

D {0}X ​∖x ​,…,x ​R 1 i

Crucial observation:

Hence .

∣R ∣ =D′

∣ ​ R ∣ ≤∏x ​…x ​1 i

D ∣R ∣ ≤D N

D ∈′
D ​Q

⩽N

∣Q ​(D)∣ =i ∣Q(D)∣ ≤′
wc(Q, N)

The complexity of the branch and bound algorithm is

(m∣dom∣ ⋅O
~

nwc(Q,N))

12.4

Refining our previous analysis

where

​

∣Q ​(D)∣i = ∣ ​ ​R ∣
R∈Q

⋀
x ​…x ​1 i

∏ D

= ∣ ​R ∣
R∈Q

⋀ D′

= ∣Q(D)∣′

R =D′

​ R ×∏x ​…x ​1 i

D {0}X ​∖x ​,…,x ​R 1 i

Crucial observation:

Hence .

∣R ∣ =D′

∣ ​ R ∣ ≤∏x ​…x ​1 i

D ∣R ∣ ≤D N

D ∈′
D ​Q

⩽N

∣Q ​(D)∣ =i ∣Q(D)∣ ≤′
wc(Q, N)

The complexity of the branch and bound algorithm is

(mn ⋅O
~

∣dom∣ ⋅ wc(Q,N))

12.5

Make the domain binary!

1 2

2 1

3 0

⇝
0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 0 0 0

 ⇝ has variables

 ⇝ for . Database has roughly the same bitsize but size domain!

R x y R
~b x2 x1 x0 y2 y1 y0

Q ​Q
~b bn

D D
~b b = log ∣dom∣ 2

13

WCOJ finally
To compute run simple branch and bound algorithm on :

runs in time

where is the worst case for on relations of size and domain .

 by reconverting back to larger domain.

We hence compute in time !

Q(D) (​ ,)Q
~b D

~b

(m ⋅O
~

(n log ∣dom∣) ⋅ 2wc(​ ,N , 2))Q
~b

wc(​ ,N , 2)Q
~b

​Q
~b ≤ N 2

wc(​ ,N , 2) ≤Q
~b wc(Q,N)

Q(D) (mn ⋅O
~

wc(Q, N))

14

Sampling answers uniformly

15

Problem
Given and , sample with probability or fail if .

Naive algorithm:

materialize in a table

sample uniformly

output .

Complexity using WCOJ: .

Q D τ ∈ Q(D) ​

∣Q(D)∣
1 Q(D) = ∅

Q(D)

i ≤ ∣Q(D)∣

Q(D)[i]

(wc(Q,N))O
~

16

Problem
Given and , sample with probability or fail if .

Naive algorithm:

materialize in a table

sample uniformly

output .

Complexity using WCOJ: .

Q D τ ∈ Q(D) ​

∣Q(D)∣
1 Q(D) = ∅

Q(D)

i ≤ ∣Q(D)∣

Q(D)[i]

(wc(Q,N))O
~

We can do better: (expected) time

PODS 23: [Deng, Lu, Tao] and [Kim, Ha, Fletcher, Han]

(​ poly(∣Q∣))O
~

∣Q(D)∣+1
wc(Q,N)

16.1

Problem
Given and , sample with probability or fail if .

Naive algorithm:

materialize in a table

sample uniformly

output .

Complexity using WCOJ: .

Q D τ ∈ Q(D) ​

∣Q(D)∣
1 Q(D) = ∅

Q(D)

i ≤ ∣Q(D)∣

Q(D)[i]

(wc(Q,N))O
~

We can do better: (expected) time

PODS 23: [Deng, Lu, Tao] and [Kim, Ha, Fletcher, Han]

(​ poly(∣Q∣))O
~

∣Q(D)∣+1
wc(Q,N)

Let’s do a modular proof of this fact!

16.2

Revisiting the problem

Sampling answers reduces to sampling ⊤-leaves in a tree

with (⊤,⊥)-labeled leaves.

17

Sampling leaves, the easy way
: number of ⊤-leaves below is known

Recursively sample uniformly a -leaf in with probability

.

A leaf in will hence be sampled with probability

Uniform!

ℓ(t) t

⊤ t ​i

​ℓ(t)
ℓ(t ​)i

ℓ(t ​)i

​ ×
ℓ(t ​)i

1
​ =

ℓ(t)

ℓ(t ​)i
​

ℓ(t)

1

18

Sampling leaves, the easy way
: number of ⊤-leaves below is known

Recursively sample uniformly a -leaf in with probability

.

A leaf in will hence be sampled with probability

Uniform!

ℓ(t) t

⊤ t ​i

​ℓ(t)
ℓ(t ​)i

ℓ(t ​)i

​ ×
ℓ(t ​)i

1
​ =

ℓ(t)

ℓ(t ​)i
​

ℓ(t)

1

In our case, we do not know …ℓ(t)

18.1

Sampling leaves with a nice oracle
: upperbound on the number of ⊤-leaves below is

known

Recursively sample uniformly a -leaf in with probability

.

Fail with probability or upon encountering ⊥.

Only makes sense if .

upb(t) t

⊤ t ​i

​

upb(t)
upb(t ​)i

1 − ​ ​∑i upb(t)
upb(t)i

​ upb(t ​) ≤∑i i upb(t)

19

Sampling leaves with a nice oracle
: upperbound on the number of ⊤-leaves below is

known

Recursively sample uniformly a -leaf in with probability

.

Fail with probability or upon encountering ⊥.

Only makes sense if .

upb(t) t

⊤ t ​i

​

upb(t)
upb(t ​)i

1 − ​ ​∑i upb(t)
upb(t)i

​ upb(t ​) ≤∑i i upb(t)

Las Vegas uniform sampling algorithm:

each leaf is output with probability ,

fails with proba where is the number of ⊤-leaves under .

Repeat until output: expected calls, where is the root.

​

ubp(t)
1

1 − ​

upb(t)
ℓ(t) ℓ(t) t

O(​)ℓ(r)
upb(r)

r

19.1

Upper bound oracles for conjunctive queries

Node : partial assignment

Number of ⊤ leaves below : .

: look for worst case bounds!

t τ ​ :=t (x ​ =1 d ​, … ,x ​ =1 i d ​)i

t ∣Q(D)[τ ​]∣t

upb(t)???

20

Upper bound oracles for conjunctive queries

Node : partial assignment

Number of ⊤ leaves below : .

: look for worst case bounds!

t τ ​ :=t (x ​ =1 d ​, … ,x ​ =1 i d ​)i

t ∣Q(D)[τ ​]∣t

upb(t)???

AGM bound: there exists positive rational

numbers such that(λ ​) ​R R∈Q

∣Q(D)∣ ≤ ​ ∣R ∣ ≤
R∈Q

∏ D λ ​R wc(Q,N)

20.1

Upper bound oracles for conjunctive queries

Node : partial assignment

Number of ⊤ leaves below : .

: look for worst case bounds!

t τ ​ :=t (x ​ =1 d ​, … ,x ​ =1 i d ​)i

t ∣Q(D)[τ ​]∣t

upb(t)???

AGM bound: there exists positive rational

numbers such that(λ ​) ​R R∈Q

∣Q(D)∣ ≤ ​ ∣R ∣ ≤
R∈Q

∏ D λ ​R wc(Q,N)

Define :

it is an upper bound on ,

it is supperadditive:

value of at the root of the tree: !

upb(t) = ​ ∣R [τ ​]∣ ≤∏R∈Q
D

t
λ ​R wc(Q,N)

∣Q(D)[τ ​]∣t

upb(t) ≥ ​ upb(t ​)∑d∈dom d

upb wc(Q,N)

20.2

Wrapping up sampling
Given a super-additive function upperbounding the number of ⊤-leaves in a tree at each node, we

have:

Las Vegas uniform sampling algorithm:

each leaf is output with probability

fails with proba

Repeat until output: expected calls.

​

ubp(t)
1

1 − ​

upb(t)
ℓ(t)

O(​)ℓ(r)
upb(r)

21

Wrapping up sampling
Given a super-additive function upperbounding the number of ⊤-leaves in a tree at each node, we

have:

Las Vegas uniform sampling algorithm:

each leaf is output with probability

fails with proba

Repeat until output: expected calls.

/answer ​

ubp(t)
1 = ​

wc(Q,N)
1

1 − ​

upb(t)
ℓ(t) = 1 − ​

wc(Q,N)
∣Q(D)∣

O(​)ℓ(r)
upb(r) = ​1+∣Q(D)∣

wc(Q,N)

21.1

Wrapping up sampling
Given a super-additive function upperbounding the number of ⊤-leaves in a tree at each node, we

have:

Las Vegas uniform sampling algorithm:

each leaf is output with probability

fails with proba

Repeat until output: expected calls.

/answer ​

ubp(t)
1 = ​

wc(Q,N)
1

1 − ​

upb(t)
ℓ(t) = 1 − ​

wc(Q,N)
∣Q(D)∣

O(​)ℓ(r)
upb(r) = ​1+∣Q(D)∣

wc(Q,N)

Final complexity: binarize to navigate the tree in :

Matches existing results, proof more modular.

(nm)O
~

(nm ⋅O
~

​)1+∣Q(D)∣
wc(Q,N)

21.2

Beyond Cardinality Constraints

22

Worst case and constraints
So far we have considered worst case wrt this class:

Each relation is subject to a cardinality constraint of size .

What if we know that our instance has some extra properties (e.g., a functional dependency)

We know

We want the join to run in where .

In this case, we say that our algorithm is worst case optimal wrt .

D ​ =Q
⩽N {D ∣ ∀R ∈ Q, ∣R ∣ ⩽D N}

wc(Q,N) = sup ​ ∣Q(D)∣
D∈D ​Q

⩽N

N

D ∈ C ⊆ D ​Q
⩽N

(f(∣Q∣) ⋅O
~

wc(Q, C)) wc(Q, C) := sup ​ ∣Q(D)∣D∈C

C

23

Finer constraints can help
.

We have: .

Q = R(x ​,x ​) ∧1 2 S(x ​,x ​)2 3

wc(Q,N) = N 2

24

Finer constraints can help
.

We have: .

Q = R(x ​,x ​) ∧1 2 S(x ​,x ​)2 3

wc(Q,N) = N 2

Let be the class of databases where and respect functional dependency .

 because each tuple of can be extended to at most one solution.

C ∣R∣ ≤ N , ∣S∣ ≤ N R x ​ →2 x ​1

wc(Q, C) ≤ N SD

24.1

Finer constraints can help
.

We have: .

Q = R(x ​,x ​) ∧1 2 S(x ​,x ​)2 3

wc(Q,N) = N 2

Let be the class of databases where and respect functional dependency .

 because each tuple of can be extended to at most one solution.

C ∣R∣ ≤ N , ∣S∣ ≤ N R x ​ →2 x ​1

wc(Q, C) ≤ N SD

Is our simple join worst case optimal for this class?

24.2

Finer constraints can help
.

We have: .

Q = R(x ​,x ​) ∧1 2 S(x ​,x ​)2 3

wc(Q,N) = N 2

Let be the class of databases where and respect functional dependency .

 because each tuple of can be extended to at most one solution.

C ∣R∣ ≤ N , ∣S∣ ≤ N R x ​ →2 x ​1

wc(Q, C) ≤ N SD

Is our simple join worst case optimal for this class?

Short answer: yes if is set before .x ​2 x ​1

24.3

Prefix closed classes
Recall the complexity of our algorithm: where

A class of database for is prefix closed for order if for each and :

 is prefix closed (for any order)!

Our algorithm is (almost) worst case optimal as long as we use an order for which is prefix

closed!

(m∣dom∣ ​ ∣Q ​(D)∣))O
~

∑i=1
n

i Q ​ =i ​ ​ R⋀R∈Q∏x ​,…,x ​1 i

C Q π = (x ​, … , x ​)1 n i D ∈ C

∣Q ​(D)∣ ≤i wc(C)

D ​Q
⩽N

C

25

Acyclic functional dependencies
 is a set of functional dependencies:

: vertices are the variables and if and for some .

If is acyclic, then let be a topological sort of . Then

is prefix closed for order (exactly the same proof as for cardinality constraints).

Hence our algorithm is worst case optimal wrt (as long as we follow).

We need to show that this functional dependencies transfer in the binarised setting but it is almost immediate.

F = (X ​ →1 Y ​, … ,X ​ →1 k Y ​)k

G(F) x → y x ∈ X ​i y ∈ Y ​i i

G(F) π = x ​, … ,x ​1 n G(F)

C ​ =F
N {D ∣ D respects F} ∩ D ​Q

⩽N

π

C ​F
N π

26

Degree constraints
A degree constraint is a constraint where . A relation verifies the constraint

if

Cardinality constraint = degree constraint with .

Functional dependency = degree constraint with .

(X,Y ,N ​)Y ∣X X ⊆ Y R

∣ ​ ​R[τ]∣ ≤
τ∈domX
max

Y

∏ N ​Y ∣X

X = ∅

N ​ =Y ∣X 1

27

Acyclic degree constraints
 set of degree constraints.

: vertices are the variables and if and for some .

If is acyclic, then let be a topological sort of . Then

is prefix closed for order (exactly the same proof as for cardinality constraints).

Hence our algorithm is worst case optimal wrt (as long as we follow).

We need to show that this functional dependencies transfer in the binarised setting but it is almost immediate.

Δ = {(X ​,Y ​,N ​) … , (X ​,Y ​,N ​)}1 1 1 k k k

G(Δ) x → y x ∈ X ​i y ∈ Y ​i i

G(Δ) π = x ​, … ,x ​1 n G(Δ)

C ​ =Δ
N {D ∣ D respects Δ} ∩ D ​Q

⩽N

π

C ​Δ
N π

28

Bonus: sampling acyclic degree constraints
We can find such that for any (polymatroid bound).

Define :

upperbound of for any ,

superadditive.

We have sampling with complexity

(λ ​)R ​ ∣R ∣ ≤∏R∈Q
D λ ​R (wc(Q, C ​))O

~
Δ
N D ∈ C ​Δ

N

upb(t) := ∣R [τ ​]∣∏R∈Q
D

t
λ ​R

Q(D)[τ ​]t D ∈ C ​Δ
N

(nm ⋅O
~

​)1+∣Q(D)∣
wc(Q,C ​)Δ

N

29

Conclusion
Simple algorithms and analysis

Modular:

join is worst-case optimal as soon as the class is prefix closed

sampling is in as long as one can provide a super additive upper bound

Future work:

Other classes such as:

cyclic FD,

general system of degree constraints (as PANDA)

Explore dynamic ordering: can we capture more classes?

​

∣Q(D)∣
wc(Q,C)

30

