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A simple algorithm for joins
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Complexity analysis

One recursive call:

branch variable  on value 

filter/project relations with : 

Binary search in  if  ordered

(  possible using tries).

Total complexity: number of recursive calls times  where  is the number of atoms.

x ​i d ∈ dom

x ​i σ ​R∏x ​…x ​i+1 n
x ​=di

O(log ∣R∣) R

O(1)

(m)O
~

m
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Number of calls

a call = a node = a partial assignment.

 current call, not :

No inconsistency.

 not empty for each 

 for 

 such nodes!

τ := x ​ =1 d ​, … ,x ​ =1 i d ​i ⊥

R [τ ]D R ∈ Q

τ ∈ Q ​(D)i Q ​ =i ​ ​ R⋀R∈Q∏x ​…x ​1 i

≤ ​ ∣Q ​(D)∣∑i=1
n

i
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 -nodes!
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x ​ =1 d ​, … ,x ​ =1 i d ​i ⊥
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At most  calls.

Complexity: .

(∣dom∣ + 1) ​ ∣Q ​(D)∣∑i=1
n

i

(m∣dom∣ ⋅O
~

​ ∣Q ​(D)∣)∑i=1
n

i
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Worst-Case Optimality
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Worst case value
Consider databases for  with a bound  on the table size:

and let:

 is the worst case: the size of the biggest answer set possible with query  and

databases where each table are bounded by .

Q N

D ​ =Q
⩽N {D ∣ ∀R ∈ Q, ∣R ∣ ⩽D N}

wc(Q,N) = sup ​ ∣Q(D)∣D∈D ​

Q
⩽N

wc(Q, N) Q

N
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Square query: Q ​ =□ R(x ​,x ​) ∧1 2 R(x ​,x ​) ∧2 3 R(x ,x ​) ∧3 4 R(x ​,x ​)4 1

wc(Q ​,N) =□ N 2

Triangle query: Q ​ =Δ R(x, y) ∧ S(x, z) ∧ T (y, z)

Overestimation of the worst case .N 2

Actually, wc(Q ​,N) =Δ N 1.5

We know how to compute  such that  (this is known as the AGM-

bound but we do not need it yet).

ρ(Q) wc(Q, N) = (N )O
~ ρ(Q)
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Worst case optimal join (WCOJ) algorithms
A join algorithm is worst case optimal (wrt ) if for every ,  and , it computes

 in time

For example, it has to compute  in time  where  is the largest relation in .

Naive strategy  may take .

D ​Q
⩽N

Q N ∈ N D ∈ D ​Q
⩽N

Q(D)

(f(∣Q∣) ⋅O
~

wc(Q,N))

Q ​(D)Δ N 1.5 N D

(R(x, y) ⋈ S(y, z)) ⋈ T (x, z) N >>2 N 1.5
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Existing WCOJ Algorithm
Rich literature:

NPRR join (PODS 2012): usual join plans but with relations partitionned into high/low degree tuples.

Leapfrog Triejoin

Generic Join: both branch and bound algorithm as ours but more complex analysis or data structures.

PANDA
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Refining our previous analysis

where 

​

∣Q ​(D)∣i = ∣ ​ ​R ∣
R∈Q

⋀
x ​…x ​1 i

∏ D

= ∣ ​R ∣
R∈Q

⋀ D′

= ∣Q(D )∣′

R =D′

​ R ×∏x ​…x ​1 i

D {0}X ​∖x ​,…,x ​R 1 i
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Make the domain binary!

1 2

2 1

3 0

⇝
0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 0 0 0

 ⇝  has  variables

 ⇝  for . Database has roughly the same bitsize but size  domain!

R x y R
~b x2 x1 x0 y2 y1 y0

Q ​Q
~b bn

D D
~b b = log ∣dom∣ 2

13



WCOJ finally
To compute  run simple branch and bound algorithm on :

runs in time 

where  is the worst case for  on relations of size  and domain .

 by reconverting back to larger domain.

We hence compute  in time !

Q(D) ( ​ , )Q
~b D

~b

(m ⋅O
~

(n log ∣dom∣) ⋅ 2wc( ​ ,N , 2))Q
~b

wc( ​ ,N , 2)Q
~b

​Q
~b ≤ N 2

wc( ​ ,N , 2) ≤Q
~b wc(Q,N)

Q(D) (mn ⋅O
~

wc(Q, N))
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Sampling answers uniformly
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Problem
Given  and , sample  with probability  or fail if .

Naive algorithm:

materialize  in a table

sample  uniformly

output .

Complexity using WCOJ: .

Q D τ ∈ Q(D) ​

∣Q(D)∣
1 Q(D) = ∅

Q(D)

i ≤ ∣Q(D)∣

Q(D)[i]

(wc(Q,N))O
~
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PODS 23: [Deng, Lu, Tao] and [Kim, Ha, Fletcher, Han]

( ​ poly(∣Q∣))O
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Let’s do a modular proof of this fact!
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Revisiting the problem

Sampling answers reduces to sampling ⊤-leaves in a tree

with (⊤,⊥)-labeled leaves.

17



Sampling leaves, the easy way
: number of ⊤-leaves below  is known

Recursively sample uniformly a -leaf in  with probability

.

A leaf in  will hence be sampled with probability

Uniform!

ℓ(t) t

⊤ t ​i

​ℓ(t)
ℓ(t ​)i

ℓ(t ​)i

​ ×
ℓ(t ​)i

1
​ =

ℓ(t)

ℓ(t ​)i
​

ℓ(t)

1
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.

A leaf in  will hence be sampled with probability

Uniform!

ℓ(t) t

⊤ t ​i

​ℓ(t)
ℓ(t ​)i

ℓ(t ​)i

​ ×
ℓ(t ​)i

1
​ =

ℓ(t)

ℓ(t ​)i
​

ℓ(t)

1

In our case, we do not know …ℓ(t)

18.1



Sampling leaves with a nice oracle
: upperbound on the number of ⊤-leaves below  is

known

Recursively sample uniformly a -leaf in  with probability

.

Fail with probability  or upon encountering ⊥.

Only makes sense if .

upb(t) t

⊤ t ​i

​

upb(t)
upb(t ​)i

1 − ​ ​∑i upb(t)
upb(t )i

​ upb(t ​) ≤∑i i upb(t)
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known

Recursively sample uniformly a -leaf in  with probability

.

Fail with probability  or upon encountering ⊥.

Only makes sense if .

upb(t) t

⊤ t ​i

​

upb(t)
upb(t ​)i

1 − ​ ​∑i upb(t)
upb(t )i

​ upb(t ​) ≤∑i i upb(t)

Las Vegas uniform sampling algorithm:

each leaf is output with probability ,

fails with proba  where  is the number of ⊤-leaves under .

Repeat until output:  expected calls, where  is the root.

​

ubp(t)
1

1 − ​

upb(t)
ℓ(t) ℓ(t) t

O( ​ )ℓ(r)
upb(r)

r
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Upper bound oracles for conjunctive queries

Node : partial assignment 

Number of ⊤ leaves below : .

: look for worst case bounds!

t τ ​ :=t (x ​ =1 d ​, … ,x ​ =1 i d ​)i

t ∣Q(D)[τ ​]∣t

upb(t)???
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Upper bound oracles for conjunctive queries

Node : partial assignment 

Number of ⊤ leaves below : .

: look for worst case bounds!

t τ ​ :=t (x ​ =1 d ​, … ,x ​ =1 i d ​)i

t ∣Q(D)[τ ​]∣t

upb(t)???

AGM bound: there exists positive rational

numbers  such that(λ ​) ​R R∈Q

∣Q(D)∣ ≤ ​ ∣R ∣ ≤
R∈Q

∏ D λ ​R wc(Q,N)

Define :

it is an upper bound on ,

it is supperadditive: 

value of  at the root of the tree: !

upb(t) = ​ ∣R [τ ​]∣ ≤∏R∈Q
D

t
λ ​R wc(Q,N)

∣Q(D)[τ ​]∣t

upb(t) ≥ ​ upb(t ​)∑d∈dom d

upb wc(Q,N)

20.2



Wrapping up sampling
Given a super-additive function upperbounding the number of ⊤-leaves in a tree at each node, we

have:

Las Vegas uniform sampling algorithm:

each leaf  is output with probability  

fails with proba 

Repeat until output:  expected calls.

​
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1

1 − ​

upb(t)
ℓ(t)

O( ​ )ℓ(r)
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/answer ​

ubp(t)
1 = ​

wc(Q,N)
1

1 − ​

upb(t)
ℓ(t) = 1 − ​

wc(Q,N)
∣Q(D)∣

O( ​ )ℓ(r)
upb(r) = ​1+∣Q(D)∣
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Wrapping up sampling
Given a super-additive function upperbounding the number of ⊤-leaves in a tree at each node, we

have:

Las Vegas uniform sampling algorithm:

each leaf  is output with probability  

fails with proba 

Repeat until output:  expected calls.

/answer ​

ubp(t)
1 = ​

wc(Q,N)
1

1 − ​

upb(t)
ℓ(t) = 1 − ​

wc(Q,N)
∣Q(D)∣

O( ​ )ℓ(r)
upb(r) = ​1+∣Q(D)∣

wc(Q,N)

Final complexity: binarize to navigate the tree in : 

Matches existing results, proof more modular.

(nm)O
~

(nm ⋅O
~

​ )1+∣Q(D)∣
wc(Q,N)
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Beyond Cardinality Constraints
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Worst case and constraints
So far we have considered worst case wrt this class:

Each relation is subject to a cardinality constraint of size .

What if we know that our instance has some extra properties (e.g., a functional dependency)

We know 

We want the join to run in  where .

In this case, we say that our algorithm is worst case optimal wrt .

D ​ =Q
⩽N {D ∣ ∀R ∈ Q, ∣R ∣ ⩽D N}

wc(Q,N) = sup ​ ∣Q(D)∣
D∈D ​Q

⩽N

N

D ∈ C ⊆ D ​Q
⩽N

(f(∣Q∣) ⋅O
~

wc(Q, C)) wc(Q, C) := sup ​ ∣Q(D)∣D∈C

C
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Let  be the class of databases where  and  respect functional dependency .

 because each tuple of  can be extended to at most one solution.

C ∣R∣ ≤ N , ∣S∣ ≤ N R x ​ →2 x ​1

wc(Q, C) ≤ N SD

Is our simple join worst case optimal for this class?
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Finer constraints can help
.

We have: .

Q = R(x ​,x ​) ∧1 2 S(x ​,x ​)2 3

wc(Q,N) = N 2

Let  be the class of databases where  and  respect functional dependency .

 because each tuple of  can be extended to at most one solution.

C ∣R∣ ≤ N , ∣S∣ ≤ N R x ​ →2 x ​1

wc(Q, C) ≤ N SD

Is our simple join worst case optimal for this class?

Short answer: yes if  is set before .x ​2 x ​1
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Prefix closed classes
Recall the complexity of our algorithm:  where 

A class of database  for  is prefix closed for order  if for each  and :

 is prefix closed (for any order)!

Our algorithm is (almost) worst case optimal as long as we use an order for which  is prefix

closed!

(m∣dom∣ ​ ∣Q ​(D)∣))O
~

∑i=1
n

i Q ​ =i ​ ​ R⋀R∈Q∏x ​,…,x ​1 i

C Q π = (x ​, … , x ​)1 n i D ∈ C

∣Q ​(D)∣ ≤i wc(C)

D ​Q
⩽N

C
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Acyclic functional dependencies
 is a set of functional dependencies:

: vertices are the variables and  if  and  for some .

If  is acyclic, then let  be a topological sort of . Then

is prefix closed for order  (exactly the same proof as for cardinality constraints).

Hence our algorithm is worst case optimal wrt  (as long as we follow ).

We need to show that this functional dependencies transfer in the binarised setting but it is almost immediate.

F = (X ​ →1 Y ​, … ,X ​ →1 k Y ​)k

G(F ) x → y x ∈ X ​i y ∈ Y ​i i

G(F ) π = x ​, … ,x ​1 n G(F )

C ​ =F
N {D ∣ D respects F} ∩ D ​Q

⩽N

π

C ​F
N π
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Degree constraints
A degree constraint is a constraint  where . A relation  verifies the constraint

if

Cardinality constraint = degree constraint with .

Functional dependency = degree constraint with .

(X,Y ,N ​)Y ∣X X ⊆ Y R

∣ ​ ​R[τ ]∣ ≤
τ∈domX
max

Y

∏ N ​Y ∣X

X = ∅

N ​ =Y ∣X 1
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Acyclic degree constraints
 set of degree constraints.

: vertices are the variables and  if  and  for some .

If  is acyclic, then let  be a topological sort of . Then

is prefix closed for order  (exactly the same proof as for cardinality constraints).

Hence our algorithm is worst case optimal wrt  (as long as we follow ).

We need to show that this functional dependencies transfer in the binarised setting but it is almost immediate.

Δ = {(X ​,Y ​,N ​) … , (X ​,Y ​,N ​)}1 1 1 k k k

G(Δ) x → y x ∈ X ​i y ∈ Y ​i i

G(Δ) π = x ​, … ,x ​1 n G(Δ)

C ​ =Δ
N {D ∣ D respects Δ} ∩ D ​Q

⩽N

π

C ​Δ
N π
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Bonus: sampling acyclic degree constraints
We can find  such that  for any  (polymatroid bound).

Define :

upperbound of  for any ,

superadditive.

We have sampling with complexity 

(λ ​)R ​ ∣R ∣ ≤∏R∈Q
D λ ​R (wc(Q, C ​))O

~
Δ
N D ∈ C ​Δ

N

upb(t) := ∣R [τ ​]∣∏R∈Q
D

t
λ ​R

Q(D)[τ ​]t D ∈ C ​Δ
N

(nm ⋅O
~

​ )1+∣Q(D)∣
wc(Q,C ​)Δ

N
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Conclusion
Simple algorithms and analysis

Modular:

join is worst-case optimal as soon as the class is prefix closed

sampling is in  as long as one can provide a super additive upper bound

Future work:

Other classes such as:

cyclic FD,

general system of degree constraints (as PANDA)

Explore dynamic ordering: can we capture more classes?

​

∣Q(D)∣
wc(Q,C)
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