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A simple algorithm for joins
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Complexity analysis

One recursive call:

e branch variable z; on value d € dom
o filter/project relations with z;: [, .
e Binary search in O(log|R|) if R ordered

O'mi:dR

(O(1) possible using tries).




e a call = a node = a partial assignment.

e =2, =di,...,x; =d; current call, not L:

No 1nconsistency.
RP[7] not empty for each R € Q

T € Q;(D) for Q; = /\ReQ 1L, R
< 3" . |Qi(D)| such nodes!



/% e a call = a node = a partial assignment.
o 2 N3 e =2, =di,...,x; =d; current call, not L:

/ \ = No inconsistency.
1
= » RP[7] not empty for each R € Q

0 | S /0 ! 2’3\ = 7€ Qi(D) for Q; = Ao, o B
n n I = < M" |Qi(D)| such nodes!
e T:=u1x,=di,...,z;41 = d;+1 current call 1s L:

STV /LN /L/l L\ " 21 =dy,...,% = d; is not L.
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Number of calls
/% e a call = a node = a partial assignment.
T g N e T:=xy=4di,...,x; =d; current call, not L:
/ \ = No inconsistency.
1
= » RP[7] not empty for each R € Q
0 1 2,3 /o 1 2,3\ T C Qz(]D)) for Q; = /\REQ lewz R
T T T = <M |Q:(D)| such nodes!
e r:=x,=di,...,z;1 =d;q current call 1s L:

/LN /L LN /L/1 \L\ "z, =di,...,z; =d; 1S not L.

T * < [dom|- 7, |Q:(D)| L-nodes!

At most (|dom| +1) Y7, |Q:(D)| calls.

Complexity: O(m|dom|- Y7 . |Q:(D)|).




Worst-Case Optimality



Worst case value

Consider databases for Q@ with a bound N on the table size:

D5V = {D | VR € Q,|R”| < N}
and let:

we(@Q, N) = supppox |Q(D)

we(Q, N) is the worst case: the size of the biggest answer set possible with query @ and

databases where each table are bounded by N.
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Worst case examples

o Cartesian product: Q; = R;(z1) A Ry(z2) has we(Q;, N) = N?
o Similarly: Qr = Ri(z1) A --- A Ri(xy) has we(Qq, N) = N*
e Square query: Qo = R(z1,z2) A R(x2, 23) A R(x3,24) A R(z4, 1)
= we(Qo, N) = N
o Triangle query: Qa = R(z,y) A S(z,2) A T(y, 2)
= Overestimation of the worst case N2.
= Actually, we(Qa, N) = N9

We know how to compute p(Q) such that wc(Q, N) = O(N*@) (this is known as the AGM-

bound but we do not need it yet).




Worst case optimal join (WCQOJ) algorithms

A join algorithm is worst case optimal (wrt D3") if for every @, N € Nand D € D5", it computes

Q(D) 1n time
O(£(IQl) - we(Q, N))

e For example, it has to compute QA (D) in time N'° where N 1s the largest relation in D.
e Naive strategy (R(z,y) >< S(y, 2)) > T(z, z) may take N? >> N5,



Existing WCOJ Algorithm

Rich literature:

e NPRR join (PODS 2012): usual join plans but with relations partitionned into high/low degree tuples.
o Leapfrog Triejoin

e Generic Join: both branch and bound algorithm as ours but more complex analysis or data structures.
« PANDA



Refining our previous analysis
Qi@ = A ][ B

=| A\ R”

Re@

= [Q(D")

where R” =[], . RP x {0}Xe\er--



Refining our previous analysis
Qi@ = A ][ B

ReQ x1. . .; Crucial observation:
= | A\ R” ,

Req ° |RD| — ’Hacla:z RD’ S ‘RD‘ S N
= |Q(D")] e Hence D' € DS".

* |Qi(D)] = |Q(D)| < we(Q, N)

Where RID)/ = H RD % {O}XR\CL'l,...,ZL'i

L1...-L;

12.1
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QD=1 A ] B

ReQ x1. . .; Crucial observation:
= | A\ R” ,

Req@ ° ’RD ’ — ‘Hazlazz RD‘ S ‘RD‘ S N
= |Q(D") » Hence D' € DY

* |Q:(D)| = [Q(D')] < we(Q, N)

where R” =[], . RP x {0}Fr\o1---a

I1...-

The complexity of the branch and bound algorithm is

~

O(mn - |dom| - wc(Q, N))




Make the domain binary!

R 22 2 20

R = y vy oy
1 2 0O 0 1 O 1 O
AN
2 1 O 1 O 0O 0 1
3 0 O 1 1 O 0 O

e Q v QP has bn variables
e D ~» D° for b = log |[dom|. Database has roughly the same bitsize but size 2 domain!



WCOJ finally

e To compute Q(D) run simple branch and bound algorithm on (Q°, D®):
= runs in time O(m - (nlog |[dom|) - 2wc(Q%, N, 2))
= where we(Q?, NV, 2) is the worst case for @ on relations of size < N and domain 2.
= we(Q% N,2) < we(Q, N) by reconverting back to larger domain.

We hence compute Q(D) in time O(mn - we(Q, N))!




Sampling answers uniformly



Given Q and D, sample 7 € Q(D) with probability
Naive algorithm:

e materialize Q(D) 1n a table
e sample i < |Q(D)| uniformly
e output Q(DD)[z].

Complexity using WCOJ: O(wc(Q, N)).

Problem

1
QD)

or fail if Q(D) = 0.



Problem

Given @ and D, sample = € Q(D) with probability 5 or fail it Q(D) = 0.
Naive algorithm:

e materialize Q(D) 1n a table
e sample i < |Q(D)| uniformly

e output Q(DD)[z].
Complexity using WCOIJ: O(wc(Q, N)).

We can do better: (expected) time O (%Y no1y(1Q|))

[QMD)[+1
PODS 23: [Deng, Lu, Tao] and [Kim, Ha, Fletcher, Han]
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Problem

Given @ and D, sample = € Q(D) with probability 5 or fail it Q(D) = 0.

Naive algorithm:

e materialize Q(D) 1n a table
e sample i < |Q(D)| uniformly

e output Q(DD)[z].
Complexity using WCOIJ: O(wc(Q, N)).

We can do better: (expected) time O (%Y no1y(1Q|))

[Q(D)[+1

PODS 23: [Deng, Lu, Tao] and [Kim, Ha, Fletcher, Han]

Let’s do a modular proof of this fact!

16.2
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Revisiting the problem

Samp]

with (

ing answers reduces to sampling

T\, L)-labeled leaves.

T

-leaves 1n a tree



Sampling leaves, the easy way

e /(¢t): number of [T leaves below t 1s known

t: &(t) e Recursively sample uniformly a T-leaf in ¢; with probability
e A leaf 1n £(t;) will hence be sampled with probability

1 n

ty: P(t1) Ly: {)(tn) 1 > K(tz) _ i
€0t:) L) L)

Uniform!

/N



Sampling leaves, the easy way

t: (1)

I

1 n
tq: P(ﬁ@ bn: o(t,)

In our case, we do not know £(¢)...

e /(t): number of

e Recursively samp

K(tz)

o) *

e A leaf 1n £(t;) will hence be sampled with probability

Uniform!

T

1

/N

-leaves below t 1s known
e uniformly a T-leaf in ¢; with probability

t)

18.1



Sampling leaves with a nice oracle

e upb(t): upperbound on the number of | T-leaves below t is

upb(t) known
R e Recursively sample uniformly a T-leaf in ¢; with probability
upb(t;)
upb(t) °

1 § « Fail with probability 1 — Y, 2% or upon encountering | L|
UW(E@ uPb(tn)
Only makes sense if >°. upb(t;) < upb(t).



Sampling leaves with a nice oracle

e upb(t): upperbound on the number of | T-leaves below t is

upb(t) known
Q e Recursively sample uniformly a T-leaf in ¢; with probability
l;};%((ti))
! ; « Fail with probability 1 -y, 2% or upon encountering | L|
upb(t;) :§ E: upb(t,)
Only makes sense if >°. upb(t;) < upb(t).

Las Vegas uniform sampling algorithm:
e each leaf is output with probability .,

e fails with proba 1 - where /(t) is the number of [ T-leaves under t.

(

Repeat untll output: O(’“’pé’() ) expected calls, where r is the root.




Upper bound oracles for conjunctive queries

% i ?\ e Node ¢: partial assignment ; := (z; = dy,...,z; = d;)
NEErN e Number of [T] leaves below ¢: |Q(D)[r]|.
%/ ER ﬁ o upb(t)???: look for worst case bounds!
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Upper bound oracles for conjunctive queries

% ‘ ?}l e Node ¢: partial assignment ; := (z; = dy,...,z; = d;)
\ ‘ i o Number of |T|leaves below ¢: |Q(D)[r]|.
%/ ER %& o upb(t)???: look for worst case bounds!
Adbsdinddbs

AGM bound: there exists positive rational
numbers (Ar)reo Such that

D)| < ]| IR"I* < we(Q, V)

ReQ

20.1



Upper bound oracles for conjunctive queries

% ‘ ?}l e Node ¢: partial assignment 7, := (z; = dy, ...,

T

leaves below t: |Q(D)[r]|

g @i e Number of : .
%/ E% % o upb(t)???: look for worst case bounds!

RN R IS

AGM bound: there exists positive rational

numbers ( AR) Reo such that Define upb(t)

= [lpeq [R7 7] < we(Q, N):

e it 1S an upper bound on |Q(D)[r]|,

D)| < ] IR"I* < we(Q, N)

Req@

e 1t 1s supperadditive: upb(t) > 3", upb(ts)
e value of upbd at the root of the tree: we(Q, N)!

20.2



Given a super-additive function upperbounding the number of |T|-leaves 1n a tree at each node, we

have:

Las Vegas uniform sampling algorithm:
e each leaf is output with probability ;.

£(t)
upb(t)

Repeat until output: 0(*7\7) expected calls.

e fails with proba 1 -




Given a super-additive function upperbounding the number of |T|-leaves 1n a tree at each node, we

have:

Las Vegas uniform sampling algorithm:
» each leat /answer is output with probability ;- = -5

— we(Q,N)
0t) 1 — QD)
upb(t) we(Q,N)

Repeat until output: o(*7\))— <27 expected calls.

e fails with proba 1 -




Wrapping up sampling

Given a super-additive function upperbounding the number of
have:

T

-leaves 1n a tree at each node, we

Las Vegas uniform sampling algorithm:
» each leat /answer is output with probability ;- = -5

. fai - ) 4 QD)
fails with proba 1 apb@) — L T we(QN)

Repeat until output: o(“240))—

£(r)

c(Q,N)

we(Q,NV)
o) expected calls.

Matches existing results, proof more modular.



Beyond Cardinality Constraints



Worst case and constraints

So far we have considered worst case wrt this class:

« DY — (D |VR € Q,|R” < N}
* we(@,N) = SUPpeps? Q(D)|

Each relation is subject to a cardinality constraint of size N.
What 1f we know that our instance has some extra properties (e.g., a functional dependency)

» We know D € ¢ € D"
e We want the join to run in O(£(|Q|) - we(Q, C)) where wc(Q, C) := suppcc |Q(D)|.

In this case, we say that our algorithm is worst case optimal wrt C.



Finer constraints can help
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Finer constraints can help
Q — R(wla 502) A S(w27 133)-
We have: we(Q, N) = N2,

e Let C be the class of databases where |R| < N, |S| < N and R respect functional dependency z; — z;.
e wc(Q,C) < N because each tuple of S can be extended to ar most one solution.
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Finer constraints can help

Q — R(ZUl,ZI?g) N S(ZEQ,CB?,).
We have: we(Q, N) = N2

e Let C be the class of databases where |R| < N, |S| < N and R respect functional dependency z, — z;.
e wc(Q,C) < N because each tuple of S can be extended to ar most one solution.

Is our simple join worst case optimal for this class?
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Finer constraints can help
Q — R(xb x2) A S(x27 CBg)-
We have: we(Q, N) = N2,

e Let C be the class of databases where |R| < N, |S| < N and R respect functional dependency z, — z;.
e wc(Q,C) < N because each tuple of S can be extended to ar most one solution.

Is our simple join worst case optimal for this class?

Short answer: yes if z, 1s set before z;.

24.3



Prefix closed classes

Recall the complexity of our algorithm: O(m|dom| Y}, |Q:(D)|)) where Q; = Apo I1,, .. R

A class of database C for @ is prefix closed for order = = (z,,...,z,) if for eachiand D ¢ C:

Qi(D)] < we(C)

D" is prefix closed (for any order)!

Our algorithm 1s (almost) worst case optimal as long as we use an order for which C 1s prefix
closed!



Acyclic functional dependencies

F=(X;—Y,...,X; — Y;)1s a set of functional dependencies:

e G(F): vertices are the variables and z — y 1if =z € X; and y ¢ Y; for some s.
e If G(F) 1s acyclic, then let = = z4, ..., z, be a topological sort of G(F). Then

Cyy = {D | D respects F} N DsN

1s prefix closed for order = (exactly the same proof as for cardinality constraints).

Hence our algorithm 1s worst case optimal wrt C¥ (as long as we follow 7).

We need to show that this functional dependencies transfer in the binarised setting but it is almost immediate.



Degree constraints

A degree constraint 1s a constraint (X,Y, Ny x) where X C Y. A relation R verifies the constraint
if

e Cardinality constraint = degree constraint with X = (.
 Functional dependency = degree constraint with Ny x = 1.



Acyclic degree constraints

A= {(X1,Y1,N)...,(Xx, Y, Nx)} set of degree constraints.

e G(A): vertices are the variables and z — y if z € X; and y € Y; for some ;.
e If G(A) 1s acyclic, then let © = z4,...,z, be a topological sort of G(A). Then

CA = {D | D respects A} N DSN

1s prefix closed for order = (exactly the same proof as for cardinality constraints).

Hence our algorithm 1s worst case optimal wrt C{ (as long as we follow 7).

We need to show that this functional dependencies transfer in the binarised setting but it is almost immediate.



Bonus: sampling acyclic degree constraints

We can find (Ag) such that [, [R®[** < O(we(Q,CR)) for any D € ¢} (polymatroid bound).

Define upb(t) := [zcq R[]

e upperbound of Q(D)[r] for any D € C¥,
e superadditive.

We have sampling with complexity O(nm -




e Simple algorithms and analysis
e Modular:
= join 1S worst-case optimal as soon as the class 1s prefix closed

= sampling 1s in ng(%ﬁ) as long as one can provide a super additive upper bound

Future work:

e Other classes such as:

= cyclic FD,

» general system of degree constraints (as PANDA)
e Explore dynamic ordering: can we capture more classes?






